

Automating the World

FACTORY AUTOMATION

INVERTER FR-D800 Series

This evolution paves the way for our future.

Our Factory Automation business is focused on "Automating the World" to make it a better, more sustainable environment supporting manufacturing and society, celebrating diversity and contributing towards an active and fulfilling role.

Mitsubishi Electric is involved in many areas including the following:

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

The Mitsubishi Electric Group is actively solving social issues, such as decarbonization and labor shortages, by providing production sites with energy-saving equipment and solutions that utilize automation systems, thereby helping towards a sustainable society.

Contents

Features of the FR-D800 Series	4
Application Examples	10
Introduction of Functions	16
Lineup	36
Standard Specifications	38
Operation Panel, Operation Steps	42
Parameter List	45
Protective Functions	50
Outline Dimensions	53
Terminal Connection Diagram, Terminal Specifications	55
Power of Inverters (Principles and Features)	58
Example Connections, Options	60
Low-Voltage Switchgear/Cables	80
Precautions on Selection and Operation	85
Compatible Motors	91
Compatibility	97
Warranty	101

This evolution paves the way for our future.

MITSUBIS

D800

MITSUBISH

Inherits the advantages of the FR-D700 series.

Keeps the smallest class body, becomes further easier to choose

and easier to use.

Environmentally friendly

"next-generation compact inverters"

help create the sustainable future.

MITSUBISH

000

D800

D800

Features of the FR-D800 Series

1 Features of the	Quest for ease of use	Quicker wiring Improves wiring work efficiency with the flip-type front cover and the wiring cover integrated into the inverter.	$\array with the transformation of the transformation of transformatio of transform$
e FR-D800 series	Revolution in ease of selection	Easy to use, compact FR-D800 inverter Inherits and enhances the functions of the FR-D700 and FR-F700PJ series. For easy operation with compact body, just choose the FR-D800 inverter.	Easy operation with compact bdy FR-D700 Inverter for air conditioning FR-F700PJ
	Advanced environmental performance	 Eco-friendly choice Helps reduce the running cost and CO₂ emission by using high-efficiency motors and reducing the standby power. The CO₂ emission reduction amount can be monitored. 	High- efficiency motor Power consumption saving
P			
6			

Settings using power supplied from the computer

With the power supplied from the computer (USB bus power connection)*1, parameters can be set*2. You can set parameters straight out of the box.

User Friendly

*1: The maximum SCCR is 500 mA. A PU connector cannot be used during USB bus power connection.

*2: Use FR Configurator2 to set parameters.

Various motor controls by the FR-D800 inverter

Not only induction motors, PM motors are also supported. As a single inverter supports various control methods, inverters need not be prepared according to the motor type.

Simple to Adapt

Responsibility of manufacturing

Our activities to reduce the environmental load are as follows.

- Uses recycled materials such as resin.
- Reduces paper usage and promotes digitization.
- · Promotes automation of the product production and packaging.
- · Reduces the material usage by downsizing the products.

۵

0

۵

۵

۵

٥

....

Eco-Friendly

....

00

D

D

n

Inverters are used for various applications in our lives and play important roles.

Application Refer to Industry Major system Major user benefits Description example page Food and beverage System downsizing A compact body contributes to system downsizing. 20 Continuing the operation during a Even if an instantaneous power failure occurs, the system can be Conveyor/slicer/ CASE 03 31 trouble restarted smoothly after the power is restored. ٦O fan/mixer/pump Speed control can save more energy compared to the commercial power Energy saving supply operation. Warehouse High regenerative braking operation is possible with the inverter and CASE 02 21, 22 Enabling quick downward operation brake resistor CASE 01 Horizontal/vertical conveyor Stable transfer operation The shock at the start and stop of the machine is reduced. _ Operation capable of handling heavy A stable operation is possible by the high-torque power in a low-speed CASE 01 22 objects range Livestock Early detection of signs of Signs of load failure can be detected early before systems fail CASE 05 29 production and abnormalities agriculture Providing an optimal environment in Maintaining a constant temperature in the facility provides a livestock-CASE 06 Pump/fan the facility friendly environment. 日日 Speed control can save more energy compared to the commercial power Energy saving supply operation. Textile industry Equipment-specific functions, such as control of the winding drums of CASE 10 Functions specialized for each system Conveyor/pump/ spinning/wiring machines, are provided. fan/drier/ Speed control can save more energy compared to the commercial power winding machine Energy saving supply operation.

Features of the FR-D800 series

Industry	Major system	Major user benefits	Description	Application example	Refer to page
Everyday devices	Washing machine /	System downsizing	A compact body contributes to system downsizing.	_	20
\square	multi-storied parking lot (turntable)	Supporting various speed commands	The speed command suited to each system can be input.	_	23
Crane		System downsizing	A compact body helps minimize the installation area.	—	20
	Small hoist	Slippage prevention for lifting	High-torque power in the low-speed range prevents slippage.	_	23
G		Enabling quick downward operation	High regenerative braking operation is possible with the inverter and brake resistor.	CASE 02	21, 22
Metal processing machine	CNC spindle machine	High-speed operation	High machining accuracy and improved work efficiency are achieved through high-speed rotation of over 400 Hz.	_	23
Air conditioning system	Air handling unit fan /	Providing optimal cooling and heating	The speed adjustment of fans in air conditioning systems contributes to the creation of optimal air conditioning systems.	CASE 06	_
*** ***	rooftop unit	Energy saving	Eco-friendly operation is achieved with a high-efficiency motor drive.		26

A

Application Examples

0 0

Advanced magnetic flux vector control enables high torque power in the low-speed range, allowing stable transportation for a variety of loads.

Set **Pr.80 (Motor capacity)**, **Pr.81 (Number of motor poles)**, **Pr.83 (Rated motor voltage)**, and **Pr.84 (Rated motor frequency)** according to the motor specifications, and set "20" in **Pr.800 (Control mode selection)** to use this function.

Tips

Vertical transfer systems

CASE

CASE

Pumps

Solution

0 0

۵

000

00

Overvoltage alarms need to be addressed when loads are lowered.

An overvoltage alarm may occur due to regenerative power generated when a load is lowered. For the 0.4K or higher inverter with a built-in brake transistor, using the high-duty brake resistor (FR-ABR) improves power regeneration capability. This not only mitigates wiring and space requirements but also reduces costs.

* Depending on the amount and frequency of regenerative power, the brake unit (FR-BU2) or the multifunction regeneration converter (FR-XC) may be used.

Set "1" in Pr.30 (Regenerative function selection) and "10% (0.4K or higher)" in Pr.70 (Special regenerative brake duty) to use this function.

Automatic restart after an instantaneous power failure enables quick recovery once power is restored, allowing the system to return to its original speed after the power restoration.

This can be achieved by setting "0" in Pr.57 (Restart coasting time).

CASE

Restaurant kitchen fans

Accidental changes to the inverter settings must be prevented.

The password function prevents parameter settings from being accidentally changed. Setting a 4-digit password can restrict parameter reading and writing.

To enable the password function, set a value other than "9999" in **Pr.296 (Password lock level)** and set a 4-digit password in **Pr.297 (Password lock/unlock)**.

Greenhouse fans

CASE

Signs of failure must be detected early to prevent systems or facilities from failing.

The load characteristic measurement function enables a warning or error output when the current load status is out of the normal range. Signs of mechanical faults such as filter clogging or worn fan blades can be easily detected, allowing for proactive actions to be taken.

This can be achieved by setting the **load characteristic measurement function (Pr.1480 to Pr.1492)**.

۵ ۵ ۵ ۵ CASE ۵ ۵ Livestock facility fans 00 The temperature in the poultry house must be kept constant. Problem Solution The PID function automatically adjusts the fan speed based on real-time measurements from temperature sensors. This ensures a stable indoor environment, creating optimal conditions for livestock production. In addition, the efficient fan speed control enables energy saving. Tips This can be achieved by setting parameters including Pr.128 (PID action selection). Mot Manipulated Detected temperate 20.0°C Measured value CASE Air handling units Problem Automatic restarting is desired even if a fault occurs. Solution The retry function allows the inverter to reset itself and restart at activation of the protective function (fault indication). The emergency drive function (fire mode) to forcibly continue operation is also available. (For details, refer to page 31.) * Restarting is disabled for some faults. This can be achieved by setting a value other than "0" in Pr.67 (Number of retries at fault Tips occurrence).

Introduction of Functions

00000000000

Useful functions for each of the design, operation, and maintenance processes of systems

 $\xi \odot$

16

Easy setup Allows easy wiring and simple startup of networking

Wide range of applications

Supports various types of applications with its compact size and layout options

Higher added values

Outstanding drive performance and various functions create higher added values

Improved safety Humans and FA devices can work together by enhancing functional safety

Toward a decarbonized society Use of PM motors contributes to energy

saving

Improved maintainability

Functions for predictive/preventive maintenance support reliable maintenance

٦E

Reduced downtime

When a fault occurs, analysis functions solve the problem quickly

Easy setup

Allows easy wiring and simple startup of networking

Improved wiring work efficiency

Flip-type front cover / No screw tightening (all capacities) *NEW*

The new flip-type front cover has been adopted. This reduces the screw tightening work for the front cover and prevents incorrect use of the wrong cover.

1 Design

FR-D700/F700PJ (Removable type, with a screw)

FR-D800 (Flip-type, with no screw)

Parameters can be set without needing to power the main circuit

USB Type-C connector NEW

With the power supplied from the computer (USB bus power connection)^{'1}, parameters can be set using FR Configurator2 while the main circuit power supply is OFF. You can set parameters straight out of the box.

*1: The maximum SCCR is 500 mA. A PU connector cannot be used during USB bus power connection.

Comb-shaped wiring cover integrated into the inverter (some capacities)

The wiring cover is integrated into the inverter, reducing removal and reinstallation work.

Time-saving through easy wiring

Spring clamp control terminal block

Spring clamp terminals have been adopted for control circuit terminals for easy wiring. Wires can be protected against loosening or contact faults due to vibrations during operation on a bogie or during transport. No additional screw tightening is required.

Information can be obtained easily from smartphones

Setup information web page **NEW**

The setup information website can be accessed using a tablet or smartphone from the 2D code on the front of the product. Information required for setup, such as how to connect and use the inverter, can be easily obtained on the setup information website.

Simplifies the wiring for RS-485 communication

Multi-drop connection for RS-485 communication NEW

The multi-drop connection will be supported by adding the terminal block for RS-485 communication.

A distributor is not required when multiple units are connected.

Fountain

Introduction of Functions

Simplifies the programming for RS-485 communication

Inverter dedicated instructions (e.g. FX5U)

Six inverter dedicated instructions can be used in combination with the FX5U and others. The time and effort required to create programs can be reduced.

RS-485 communication

Fireworks for live performances

Easy connection to the GOT by setting only the station number

GOT automatic connection function

No complicated communication settings are required for the connection with the GOT. Connection can be made only by setting the station number, reducing the load of the setting work.

Increase the speed of RS-485 communication

RS-485 communication speed

Although it is a compact and easy-to-use inverter, its communication speed is equivalent to that of the FR-A800/ FR-E800 high-performance inverters. Information can be exchanged smoothly.

Effective solution for downsizing of the enclosure

Side-by-side installation

Side-by-side installation is possible to install multiple inverters in close contact. Users can select the most suitable layout for the intended installation area.

ND rating: Allowed for the surrounding air temperature of 40°C or lower

SLD rating: Allowed for the surrounding air temperature of 30°C or lower

Further reducing the external size

The external size (width) of some capacity models have been reduced.

Installation interchange attachment options will be available for facilitating replacement.

Voltago algos	Inverter capacity (K)								
voltage class	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5
Three-phase 200 V	_	-	-	-	_	—	0	-	-
Three-phase 400 V	\square	\square	0	0	0	—	—	-	-
Single-phase 200 V	—	-	-	-	—	0	\square	\square	\square
Single-phase 100 V	_	_	_	_	\square	\square	\square	\square	\square

 \bigcirc : Width reduced, –: Same width, \: Not provided

Double rating (ND rating, SLD rating) NEW

For the FR-D800, the SLD rating is added (double rating, the initial status is the ND rating), and the appropriate rating can be selected with parameters. For light-load applications such as fans and pumps, using an inverter with a capacity smaller than a motor by one rank with the SLD rating can reduce the size, weight, and cost of the system.

) Tips Selection example of double rating models (for a 1.5 kW motor)

*1: Example of the FR-D820-3.7K-165. The number differs by the capacity.

Selecting a resistor according to the application reduces the installation space inside the enclosure

Built-in brake transistor

The enhanced power regeneration capability (brake duty: 100% max.) is supported. High regenerative braking operation can be performed without a brake unit.

Built-in brake transistor models

Inverter capacity (K)									
0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	
-	—	O*1	O*1	0	0	0	0	0	
\square		0	0	0	0	0	0	0	
-	—	O*1	O*1	0	0				
_	_	O*1	O*1	\sum	\sum	\geq	\sum	\sum	
	0.1	0.1 0.2	0.1 0.2 0.4 O ^{*1} O ^{*1} O ^{*1}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 0.2 0.4 0.75 1.5 2.2 3.7 5.5 - - \bigcirc^{*1} \bigcirc^{*1} \bigcirc \bigcirc \bigcirc - - \bigcirc^{*1} \bigcirc^{*1} \bigcirc \bigcirc	

Built-in, -: Not built-in, \: Not provided
 *1: The brake duty is 30% ED maximum when the lowest resistance value is used.

The brake resistor must have a sufficient capacity to consume the regenerative power.

Use in harsh environments

Circuit board coating NEW

Various applications are supported by allowing for corrosive environments or a wide range of surrounding air temperatures.

The circuit board coating (conforming to IEC 60721-3-3:1994 3C2/3S2) is provided for improved environmental resistance. *2: Coated model (-60) only

Water treatment plant

Painting line

Less wiring and smaller space for compliance with the Harmonic Suppression Guidelines

Filterpack is available

The Filterpack (FR-BFP2) is available as an option. The power factor improving DC reactor, common mode choke, and capacitive filter (radio noise filter), that are essential for air conditioning applications, are included in a Filterpack.

Air conditioning system

Supporting various speed commands Ver.UP

In addition to commands input from the operation panel, various other speed commands are supported, including those using the multi-speed operation by switches, JOG operation, RS-485 communication, and pulse train input. The optimal speed command method can be chosen in accordance with the system specifications.

Improving productivity with shorter tact time by the enhanced regeneration function

Built-in brake transistor Ver.UP

With the enhanced power regeneration capability (brake duty: 100% max.), deceleration time can be shortened.

Built-in brake transistor models

Voltage class	Inverter capacity (K)									
	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	
Three-phase 200 V	_	-	O*1	O*1	0	0	0	0	0	
Three-phase 400 V	\square	\square	0	0	0	0	0	0	0	
Single-phase 200 V	_	-	O*1	O*1	0	0	\square	\square	\square	
Single-phase 100 V	_	_	0*1	0*1	\sum	\sum	\sum	\sum	\square	

: Built-in, -: Not built-in, \: Not provided *1: The brake duty is 30% ED maximum when the lowest resistance value is used.

The brake resistor must have a sufficient capacity to consume the regenerative power.

Increased magnetic excitation deceleration

When the increased magnetic excitation deceleration function is used, the motor consumes the regenerative power and the deceleration time can be reduced without using a brake resistor.

The tact time can be reduced for a transfer line or the like.

Airport baggage conveyor

For more precise processing Ver.UP

The maximum frequency of 590 Hz can be output under V/F control. (Up to 400 Hz can be output under other controls.) The rotation speed can be set according to the material to be processed, and furthermore, stable high-speed rotation is possible. It is best suited for machine tools used to cut or polish various new materials.

Polisher

Mitsubishi Electric

induction motor SF-PR

Mitsubishi Electric globa PM motor EM-A

NEW

NEW Non-Mitsubishi Electric

PM moto

Mitsubishi Electric IPM motor MM-EF/EFS

Non-Mitsubishi

Electric induction

Supporting various motors

Driving an induction motor or synchronous motor Ver.UP

Not only induction motors but also PM motors are supported for synchronous motor drive. The auto tuning function enables operation of non-Mitsubishi Electric PM motors*¹. Even if the control method differs depending on the application, such as V/F control for fans and pumps or Advanced magnetic flux vector control for conveyors, the FR-D800 can switch between control methods, reducing the number of required spare inverters.

	Mitsubishi Electric general- purpose (induction) motor SF-PR	Mitsubishi Electric IPM motor MM-EF/EFS	Mitsubishi Electric global PM motor EM-A	Non-Mitsubishi Electric induction motor	Non-Mitsubishi Electric PM motor
Compatibility	0		0		

○: Tuning not required, △: Tuning required *1: Tuning may be disabled depending on the motor characteristics.

Stable operation under load variation

Advanced magnetic flux vector control

Selecting Advanced magnetic flux vector control enables stable operation in the lift application that requires high-torque in the lowspeed range.

- Starting torque: 200%/0.5 Hz (3.7K or lower),
- 150%/0.5 Hz (5.5K or higher)
- Speed fluctuation ratio*²: 1%
- Speed control range: 1:120

Improving work efficiency by powerful high-speed operation

PM sensorless vector control NEW

The torque is not reduced in the high-speed range (up to the rated speed) during PM sensorless vector control as compared with operation using a stepper motor. High-speed system operation improves the tact time. The PM motor offline auto tuning*³ enables sensorless operation of other manufacturers' permanent magnet (PM) motors. Starting torque: 50% Speed fluctuation ratio*⁴: ±0.05%

Speed control range: 1:120

*3: Tuning may be disabled depending on the motor characteristics.

*4: Speed fluctuation ratio = <u>
 speed with no load - speed with rated load</u> Rated speed
 × 100 (%)

^{*2:} Speed fluctuation ratio = <u>
 speed with no load - speed with rated load</u> Rated speed × 100 (%)

Improved safety

Humans and FA devices can work together by supporting functional safety

Attaining both safety and productivity

Conformance to functional safety standards

The product complies with the following safety standards to facilitate adherence to the EU Machinery Directive. The shutoff circuit (hardware) securely shuts off the output in case of emergency.

The inverter that supports functional safety can comply with the safety standards without incurring significant expenses.

- <Conformance level>
 - EN ISO 13849-1, PLd/Cat.3
 - EN 61508, EN 61800-5-2, SIL2

STO (safe torque off) function

Driving power to the motor is electronically shut off by responding to the input signal from external equipment. Compared with a system which does not support the STO function, the number of installed MCs can be reduced to one.*¹ While ensuring the safety, the initial system cost, maintenance work, and installation space can be reduced.

MC FR-D800 series

*1: One MC is required to shut off the power at an activation of the protective function.

Prevents unexpected setting changes

Password function

Setting a 4-digit password can restrict parameter reading/writing.

This function is useful to prevent parameter values from being rewritten by misoperation.

Motor

No preparation is required for each destination, supporting shipments to the global market *Ver.UP*

Compliance with global standards

Item	Standard	Category		
Protective structure	IEC 60529	IP20		
Inculation distance	UL 61800-5-1 CSA C22.2 No.274	Overvoltage category III, pollution degree 2		
Insulation distance	EN 61800-5-1	Overvoltage category III, pollution degree 2		
	EN 61800-3	2nd environment (Class 3)		
EMC	KS C 9800-3:2017	KN standards, Radio Waves Act (South Korea)		
LVD	IEC/UL 61800-5-1	Overvoltage category III, pollution degree 2		
RoHS II Directive	2011/65/EU, (EU)2015/863 EN IEC 63000:2018	_		
Machine safety	IEC 61508 IEC 62061 ISO 13849-1 ISO 61800-5-2	SIL2 SIL CL 2 Cat.3, PL d. STO		
Hazardous environment	IEC 60721-3-3	3C2, 3S2		
China RoHS	Management Methods for the Restriction of the Use of Hazardous Substances in Electrical and Electronic Products	_		
EAC system	CU TR004/2011 CU TR020/2011			
Ecodesign Directive	EN 61800-9-2:2017	—		
WEEE Directive	2012/19/EU	-		

Operation Toward a decarbonized society Use of PM motors contributes to energy saving

Contributing to a decarbonized society by driving energy-saving motors

Operation using the IE5 efficiency class motor NEW

The efficiency class IE5 motor drive achieves the energy saving operation. Power consumption can be reduced by approx. 9% compared with our SF-JR (IE1 efficiency class) motor and approx. 2% compared with our SF-PR (IE3 efficiency class) motor. Power consumption and CO_2 emission can be reduced compared to using the conventional motors.

Comparison of power consumption (MWh/year) and CO₂ emission (t/year)

Supporting step-by-step energy saving solution

High-efficiency motor drive Ver.UP

Further energy saving operation is enabled by using IE3 induction motors or PM motors.

Step-by-step replacement of existing devices is enabled. Users can replace inverters first and then motors. There is no need to replace them all at once.

Next, replace motors.

Monitoring the energy-saving effect and CO₂ emission reduction

Energy saving monitor and CO₂ emission reduction monitor *Ver.UP*

The effect of the energy saving (instantaneous value, average value, etc.) can be checked via the operation panel, output terminal, or RS-485 communication. In addition, the amount of output power (CO_2 emission) can be measured in the inverter and output as an analog signal, enabling the checking of the cumulative electric power value.*¹

*1: This function cannot be used as a meter to certify electricity billings.

Optimizing the output voltage

Load pattern selection

Optimal output characteristics (V/F characteristics) for application or load characteristics can be selected.

Energy saving For variable-torque load (Pr.14 = "1")

The output voltage will change in a square curve against the output frequency equal to or lower than the base frequency.

Pr.3 Base frequency Output frequency (Hz)

Example: Air conditioning fan Example: Pump Select for constant-torque load (Pr.14 = "0") even for fan and pump depending on the application. For constant-torque load (Pr.14 = "0")

The output voltage will change linearly against the output frequency equal to or lower than the base frequency.

Output frequency (Hz)

Function introduction

26

Increased energy saving with inverters

Advanced optimum excitation control **NEW**

A large starting torque can be provided with the same motor efficiency under Optimum excitation control. Without the need of troublesome adjustment of parameters (acceleration/deceleration time, torque boost, etc.), acceleration is done in a short time. Also, energy saving operation with the utmost improved motor efficiency is performed during constant-speed operation.

When Advanced magnetic flux vector control is selected, Advanced optimum excitation control is available.

Eliminating cooling fans or using PWM fans **NEW**

Cooling fans have been eliminated for 1.5K or lower inverters. Users need not worry about the life of the fan. Using PWM fans enables the control of rotations per minute. They are designed to run at high speed only when cooling is required, such as during an overload, resulting in quiet operation and energy saving.

Energy saving examples

Energy saving with the regenerative option

Power regeneration function (optional)

While the motor rotates to drive the machine during power driving, the machine rotates the motor during regenerative driving, which results in energy saving since the motor serves as a generator which returns the power to the power supply.

By using the multifunction regeneration converter (FR-XC) as a common converter, the power returned from an inverter during regenerative drive can be supplied to another inverter, which in turn saves energy.

Maintenance Functions for predictive/preventive maintenance support reliable maintenance

Enhanced monitoring functions for predictive maintenance and planned maintenance

Life diagnosis function Ver.UP

Monitoring functions for predictive maintenance and planned maintenance are enhanced.

The life of the following parts can be diagnosed.

- Main circuit capacitor
- Cooling fan
- Control circuit capacitor
- Inrush current limit circuit
- Fault contact relay **NEW**
- Main circuit elements
 NEW

Parts service life data is displayed in a dedicated window in FR Configurator2. An alert icon is shown in the parts life alarm field for the parts recommended for replacement. This can be used as a guideline to replace long life parts.

* The function is conceptually illustrated. It is not the actual layout.

St. No.	0 v Last update time 2025/01/0	7 16:08:09	SUbdate St Main circuit capacitor life measuring
Th Th J c	e measured life shown is an estimated I e actual life may vary depending on app any abnormality is detected, replacemen	itespan. lications and t is required.	the installation environment.
larm	Name	Life	Pemarks
	Main circuit capacitor life (Standard model and IP55/IP67 compatible model)	1.7272	The last measured value is displayed. When the value is 85% or less, it is recommended to replace the capacitor.
	Main circuit capacitor estimated residual-life (Standard model and IP55/IP67 compatible mode)		Even when the power supply cannot be turned OFF, the remaining life of the main circuit capacitor can be estimated without stopping the operation. When the value fails below 10% it is recommended to replace the capacitor.
	Control circuit capacitor life		When the value falls below 10% it is recommended to replace it.
	Inrush current limit circuit life (Standard model and IP55/IP67 compatible mode0		When the value is 10% or less, it is recommended to replace it.
	Power cycle life		Degree of deterioration of the inverter module. When the value is 15% or less, it is recommended to replace it.
	ABC relay contact life		Degree of deterioration of the relay contacts of terminals A, B, and C. When the value is 10% or less, it is recommended to replace it.
	Corrosion level (coated models)		Corrosion level of the control circuit board. When the level is 3 or higher, it is recommended to replace it.
	Cooling fan life		Life alarm is displayed when the fan speed decreased lower than the setting

() Tips Procedure for easy diagnosis check (main circuit capacitor life diagnosis)

Check that the motor is connected and at a stop, then set "1" in **Pr.259**.

Turn OFF the power and measure the capacitor capacity.	ON
	OFF

Turn OFF the power. The inverter applies DC voltage to measure the capacitor capacity while the inverter power is OFF.

After confirming that the LED of the inverter is OFF, power ON again.

If the setting value of **Pr.259** becomes "3", it means that the measurement is completed. When **Pr.258** is read, the deterioration degree is displayed as a percentage, considering the capacitor capacity at shipment as 100%. Regard 85% or less as the end of part life.

Supporting scheduled maintenance planning

Load characteristics measurement function **NEW**

The speed-torque characteristic is stored while no fault occurs, enabling comparison between the measured data and the stored data.

When a mechanical fault such as clogging of the filter occurs, the inverter outputs a warning or shuts off the output to prevent system damage.

Reduced downtime

When a fault occurs, analysis functions solve the problem quickly

Troubleshooting support tool

FR Configurator2

Graph function

The graph function using high-speed sampling is supported, allowing inverter monitor data to be displayed graphically.

Analyzing the waveform when a problem occurs contributes to identifying the cause.

Trace function **NEW**

The operating status (output frequency or other data) immediately before the protective function is activated can be stored in the internal memory.

Users can display a graph or send it by e-mail to headquarters from the worksite, facilitating trouble analysis.

Supporting replacement from the previous model

FR Configurator2 (Convert function)

The parameter settings of the FR-D700 and FR-F700PJ (to be supported in April 2026) can be converted to FR-D800 parameters using FR Configurator2, simplifying replacement.

Input terminal filter

The terminal response adjustment function allows adjustment of the response time in accordance with the existing facility.

Time-saving for restoration work through easy wiring

Spring clamp terminals

Spring clamp terminals have been adopted for control circuit terminals for easy wiring.

Continuing the operation during a trouble

Emergency drive (Fire mode) NEW

The inverter can continue driving the motor in case of emergency such as a fire, since protective functions are

not activated even if the inverter detects a fault.

- *: This function is disabled in the initial status. To enable this function, set Pr.523 (Emergency drive mode selection). *: Using this function may damage the motor or inverter because driving
- *: Using this function may damage the motor or inverter because driving the motor is given the highest priority.
- Use this function for emergency operation only. The operation can be switched to the commercial power supply
- operation at the occurrence of a fault which may cause damage of the inverter.

Automatic restart after instantaneous power failure function

After an instantaneous power failure, the motor speed is detected upon power restoration, enabling a smooth restart from the coasting motor speed.

Power failure time deceleration-to-stop function

In the event of an instantaneous power failure or undervoltage, the motor can be decelerated or decelerated to a stop, and reaccelerated to the set frequency upon power restoration.

This avoids the danger caused by coasting during a power failure.

This function is effective for grinders with large inertia.

Air handling system

Reliable quality

World-wide

Although the initial value settings (50/60 Hz reference, sink/source) differ depending on the sales region, users can switch the settings with a single switch and a single parameter.

Responsibility of manufacturing

Our activities to reduce the environmental load are as follows.

- Uses recycled materials such as resin.
- Reduces paper usage and promotes digitization.
- Promotes automation of the product production and packaging.
- Reduces transportation volume by local procurement/ production.

Eco-friendly choice

- Helps reduce the running cost and CO₂ emission by using high-efficiency motors such as PM motors, and reducing the standby power.
- The emission reduction amount can be monitored.

Simulation

High-quality Mitsubishi Electric inverters can be achieved by ensuring sufficient reliability at the design stage, using 3D-CAD and vibration analysis simulation to withstand harsh operating environments.

Three-dimensional vibration analysis

EMC test

EMC tests are conducted for all inverter series. Equipped with one of the largest radio-frequency anechoic chambers in Japan, the high quality is assured through various tests such as conducted disturbance tests and radiated immunity tests.

One of the largest radio-frequency anechoic chambers in Japan

Peripheral tools

FR Configurator2 for further ease of operation

Using FR Configurator2, easy-to-use software assisting anything from setup to maintenance, much more useful functions are available for users.

e trial version	The function is available in the free trial version (usable free of charge with limited functions)
supported	It can be downloaded at Mitsubishi Electric FA Global Website.

	Free trial version			Free trial version
Parameter list	0]	Convert	0
Diagnosis	0]	Developer	×
Al fault diagnosis	×		USB memory parameter	×
Graph	×		copy file edit	~
Batch monitor	×]	Help	0
Test operation	0]	: Availabl	e ×: Not available
I/O terminal monitor	×]		

The trial version (usable for a limited period), for which all the functions of the product are available for 30 days, is also provided.

Life diagnosis check

Parts service life data is displayed in a dedicated window. An alert icon is shown in the parts life alarm field for the parts recommended for replacement. This can be used as a guideline to replace long life parts.

Graph function and trace function

Waveform graph data immediately before the protective function is activated can be automatically obtained. Graph display and log analysis are available using the stored trace data.

Further facilitating operation with your smartphone

Mitsubishi Electric FA SPEC Search

Users can select options and motors on the website. Users can easily search for products using their smartphone or computer.

GET IT ON

Google Play

Factory Automation SPEC Search Download the app for free now

Setup information web page

The setup information website can be accessed directly from the 2D code on the front of the product.

The model name, serial number, and country of origin can be checked.

Manuals and videos can be viewed and obtained easily.

Further facilitating operation with Motorizer (capacity selection software) To be supported

Users can select motors by entering data of mechanical configuration, specifications, and operating patterns. Applicable combinations include inverters, sensorless servo drive units, and AC servo amplifiers. The most suitable combination can be selected from the selection result. The software also supports multi-axis systems.

Twelve types of load mechanism such as a ball screw or a rack and pinion are selectable. Selection is available by following the steps from 1 to 3.

When users include the power regeneration common converter or other applicable converter, the capacity of the converter can be selected at the same time.

The software can be downloaded from the Mitsubishi Electric FA Global Website.

Further facilitating operation with the selection guide software

Advanced search for optimum inverters is available. Users can select inverters by entering data such as the motor capacity and current value and specifying specifications. The time spent on inverter selection can be reduced. This software can be used on the Mitsubishi Electric FA Global Website.

 Multiple inverters can monitored using the inverter target station switching function.

Further facilitating operation with GOT interaction functions To be supported

Enhanced compatibility between inverters and the GOT (human machine interface) brings various benefits to users. Connection with the GOT2000 series can be established just by setting the station number. Other necessary settings are automatically done.

Users want to check the inverter

settings easily

Immediate warning of system errors

By storing the data of relationship between the output frequency and the torque during normal inverter operation, users can judge whether the load is operating in normal condition. By outputting out-of-range warnings if applicable, users can detect mechanical faults or perform maintenance.

Reducing downtime by interacting with the GOT

Faults occurred in the inverter can be displayed on the GOT screen. When a fault occurs, it is possible to identify the fault details immediately, which contributes to downtime reduction.

Lineup

Voltage class and applicable capacity

	Power supply / voltage class	Rated capacity	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	
FR-D820-[]K-[]	Three-phase 200 V	Rated current	008	014	025	042	070	100	165	238	318	450	580
												0	0
FR-D840-[]K-[]	Three-phase 400 V	Rated current	—	_	012	022	037	050	081	120	163	230	295
												0	0
FR-D820S-[]K-[]	Single-phase 200 V	Rated current	008	008 014	025	042	070	100	_	_	_	—	_
FR-D810W-[]K-[]	Single-phase 100 V	Rated current	008	014	025	042		_		_	_	_	_

ullet: Released, \bigcirc : To be released

*1: Double voltage rectification / 200 V output *2: "0.1K-008" means "0.1 kW, 0.8 A", and "15K-580" means "15 kW, 58.0 A". *3: Conforming to IEC 60721-3-3:1994 3C2/3S2
Specifications

Comparison of major specifications

Specif	ications	FR-D800	FR-D700	FR-F700PJ	FR-E800
Lineup		Three-phase 200 V: 0.1K to 15K Three-phase 400 V: 0.4K to 15K Single-phase 200 V: 0.1K to 2.2K Single-phase 100 V: 0.1K to 0.75K	Three-phase 200 V: 0.1K to 15K Three-phase 400 V: 0.4K to 15K Single-phase 200 V: 0.1K to 2.2K Single-phase 100 V: 0.1K to 0.75K	Three-phase 200 V: 0.4K to 15K Three-phase 400 V: 0.4K to 15K	Three-phase 200 V: 0.1K to 22K Three-phase 400 V: 0.4K to 22K Three-phase 575 V: 0.75K to 7.5K Single-phase 200 V: 0.1K to 2.2K Single-phase 100 V: 0.1K to 0.75K
Control method		V/F control Advanced magnetic flux vector control PM sensoriess vector control	V/F control General-purpose magnetic flux vector control	V/F control General-purpose magnetic flux vector control PM sensorless vector control	V/F control Advanced magnetic flux vector control Real sensorless vector control Vector control PM sensorless vector control
Starting torque		Advanced magnetic flux vector control: 150% at 0.5 Hz PM sensorless vector control: 50%	General-purpose magnetic flux vector control: 150% at 1 Hz, 200% at 3 Hz (3.7K or lower) with slip compensation enabled	General-purpose magnetic flux vector control: 120% at 1 Hz with slip compensation enabled PM sensorless vector control: 50%	Advanced magnetic flux vector control: 150% at 0.5 Hz Real sensorless vector control and Vector control: 200% at 0.3 Hz (3.7K or lower) 150% at 0.3 Hz (5.5K or higher) PM sensorless vector control: 200% (MM-GKR, EM-A), 50% (other than MM-GKR and EM-A)
Output frequency	range	0.2 to 590 Hz	0.2 to 400 Hz	0.2 to 400 Hz	0.2 to 590 Hz
Built-in brake tra	nsistor	Built-in for 0.4K to 15K	Built-in for 0.4K to 15K	Built-in for 0.4K to 15K	Built-in for 0.4K to 22K
Input signal	Contact input	5	5	5	[E800]: 7 [E800-E]: 2 [E800-SCE]: 0
	Pulse train input	100k pulses/s	Unavailable	Unavailable	Unavailable
Output signal	Open collector output	2	2	1	[E800]: 2 [E800-E], [E800-SCE]: 0
	Contact output	1	1	1	1
Fault output		1 changeover contact (240 VAC 2A, 30VDC, 1A), open collector output	1 changeover contact (230 VAC 0.3A, 30 VDC 0.3 A), open collector output	1 changeover contact (230 VAC 0.3A, 30 VDC 0.3 A), open collector output	1 changeover contact (240 VAC 2A, 30VDC, 1A), open collector output
Monitor	Pulse train output	Unavailable	1440 pulses/s, 1 mA	1440 pulses/s, 1 mA	1440 pulses/s, 1 mA
function	Analog output	0 to 10 VDC / 12 bits	Unavailable	Unavailable	0 to ±10 VDC
	RS-485 (Mitsubishi inverter protocol)	Available	Available	Available	Available
Built-in communication	RS-485 (MODBUS [®] RTU)	Available	Available	Available	Available
function	Ethernet communication	Unavailable	Unavailable	Unavailable	Available
	Safety communication	Unavailable	Unavailable	Unavailable	Available
Functional	Function of ISO 61800-5-2	STO	STO	Unavailable	STO, SS1, etc.
Functional safety	Safety level	SIL2, PLd, Cat.3	SIL2, PLd, Cat.3	Unavailable	SIL2, PLd, Cat.3 or SIL3, PLe, Cat.3 depending on the model
Surrounding air temperature		-20°C to +60°C * SLD rating: Derating is required for the temperature above 40°C. ND rating: Derating is required for the temperature above 50°C.	-10°C to +50°C	-10°C to +50°C	-20°C to +60°C * Derating is required for the temperature above 50°C.
USB		Туре-С	Not provided.	Not provided.	mini-B
Plug-in option		Not supported	Not supported	Not supported	1

Standard Specifications

Rating

Three-phase 200 V power supply

	Model	FR-D820-[]		0.1K-008	0.2K-014	0.4K-025	0.75K-042	1.5K-070	2.2K-100	3.7K-165	5.5K-238	7.5K-318
Applicable	motor capacity	SLD		0.2	0.4	0.75	1.1	2.2	3.7	5.5	7.5	11
(kW)*1		ND (initial setting)		0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5
	Rated capacity	SLD		0.5	1.0	1.6	2.3	3.8	6.3	9.1	12.1	17.1
	(kVA)*2	ND (initial setting)		0.3	0.5	1.0	1.6	2.7	3.8	6.3	9.1	12.1
	Rated current	SLD		1.4 (1.1)	2.5 (2.0)	4.2 (3.5)	6.0 (5.1)	10 (8.5)	16.5 (12.0)	23.8 (19.6)	31.8 (26.0)	45 (37.0)
	(A)*7	ND (initial setting)		0.8	1.4	2.5	4.2	7	10	16.5	23.8	31.8
0	Overload	SLD		110% 60 s	s, 120% 3 s	(inverse-ti	me characte	ristics) at s	urrounding a	air temperat	ure of 40°C	
Output	current rating*3	ND (initial setting)		150% 60 :	s, 200% 0.5	5 s (inverse	-time charac	teristics) a	tics) at surrounding air temperature of 50°C			
	Rated voltage*	4		Three-pha	ase 200 to 2	240 V						
	Degenerative	Brake transistor		Not used		Built-in						
	braking	Maximum brake to reference)*5	orque (ND	150%		100%		50%	20%			
I	Rated input AC	Rated input AC voltage/frequency		Three-pha	ase 200 to 2	240 V, 50/6	0 Hz					
	Permissible AC	AC voltage fluctuation		170 to 264 V, 50/60 Hz								
	Permissible fre	issible frequency fluctuation		±5%								
		Without DC	SLD	1.8	3.4	5.6	8.0	13.7	20.6	31.2	40.5	57.5
D	Rated input	reactor	ND	1.2	2.2	3.7	6.1	10.2	13.6	21.6	31.0	41.2
Power supply*9	current (A)*8	With DC reactor	SLD	1.4	2.5	4.2	6.0	10.0	16.5	23.8	31.8	45.0
ouppij y		WITI DC Teactor	ND	0.8	1.4	2.5	4.2	7.0	10.0	16.5	23.8	31.8
		Without DC	SLD	0.7	1.3	2.1	3.1	5.2	7.8	11.9	15.4	21.9
	Power supply	reactor	ND	0.4	0.8	1.4	2.3	3.9	5.2	8.2	11.8	15.7
	(kVA)*6	With DC reactor	SLD	0.5	1.0	1.6	2.3	3.8	6.3	9.1	12.1	17.1
	. ,	With DC reactor	ND	0.3	0.5	1.0	1.6	2.7	3.8	6.3	9.1	12.1
Protective structure		Open type IP20 (for IEC 60529 only)										
Cooling sys	stem			Natural					Forced air			
Approx. mass (kg)			0.5	0.5	0.6	0.7	1.2	1.3	1.4	2.4	2.5	

5

The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric standard 4-pole motor. *1

The rated output capacity is the value with respect to 230 V output voltage. *2

The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. *3

*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. The maximum point of the voltage waveform at the output side of the inverter is approximately the power supply voltage multiplied by $\sqrt{2}$.

The amount of braking torque is the average short-term torque (which varies depending on motor loss) that is generated when a motor decelerates in the shortest time *5 by itself from 60 Hz. It is not continuous regenerative torque. The average decleration torque becomes lower when a motor decelerates from a frequency higher than the base frequency. The inverter is not equipped with a built-in brake resistor. Use an option brake resistor for an operation with large regenerative power (not available for the FR-D820-0.1K-008 and FR-D820-0.2K-014). The brake unit (FR-BU2) can be also used.

The power supply capacity varies with the value of the input power impedance (including those of the input reactor and cables).

The value in parentheses is the rated output current when the low acoustic noise operation is performed with the surrounding air temperature exceeding 30°C while a 3 kHz or higher value is selected in **Pr.72 PWM frequency selection**. *7

*8 The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value.

To be compliant with the standards, wire the inverter using the following earthing (grounding) and power supply methods: FR-D820-wyz: TN-C, TN-S (corner earthed), IT (isolated, phase earthed over impedance) *9

Three-phase 400 V power supply

	Model	FR-D840-[]		0.4K-012	0.75K-022	1.5K-037	2.2K-050	3.7K-081	5.5K-120	7.5K-163
Applicable	motor capacity	SLD		0.75	1.5	2.2	3.7	5.5	7.5	11
(kŴ)*1		ND (initial setting)		0.4	0.75	1.5	2.2	3.7	5.5	7.5
	Rated	SLD		1.7	2.8	3.8	6.2	9.1	12.4	17.5
	(kVA)*2	ND (initial setting)		0.9	1.7	2.8	3.8	6.2	9.1	12.4
	Rated current	SLD		2.2 (1.8)	3.7 (3.0)	5 (4.2)	8.1 (6.8)	12 (10.0)	16.3 (13.8)	23 (19.5)
	(A) *7	ND (initial setting)		1.2	2.2	3.7	5	8.1	12	16.3
Output	Overload	Overload SLD		110% 60 s temperatu	s, 120% 3 s (re of 40°C	inverse-tim	e characte	ristics) at s	urrounding a	air
	rating*3	ND (initial setting)	1	150% 60 s temperatu	150% 60 s, 200% 0.5 s (inverse-time characteristics) at surrounding air temperature of 50°C					
	Rated voltage	Rated voltage*4		Three-pha	ise 380 to 48	30 V				
	Regenerative	Brake transistor		Built-in						
	braking	Maximum brake to reference)*5	orque (ND	100%		50%	20%			
F	Rated input AC voltage/frequency			Three-pha	ise 380 to 48	30 V, 50/60	Hz			
	Permissible A	Permissible AC voltage fluctuation		323 to 528 V, 50/60 Hz						
	Permissible fre	equency fluctuatior	ı	±5%						
		Without DC	SLD	3.1	6.0	7.8	11.9	16.1	21.3	29.1
Davisa	Rated input	reactor	ND	1.8	3.2	5.7	7.6	11.4	16.3	20.9
Power supply*9	current (A)*8	With DC reactor	SLD	2.2	3.7	5.0	8.1	12.0	16.3	23.0
ouppij y		With DC reactor	ND	1.2	2.2	3.6	5.0	8.0	12.0	16.0
		Without DC	SLD	2.4	4.2	6.1	9.0	12.5	16.2	22.2
	Power supply	reactor	ND	1.4	2.7	4.4	5.8	8.6	12.4	15.9
	(kVA)*6	With DC reactor	SLD	1.7	2.8	3.8	6.2	9.1	12.4	17.5
		With DO Teactor	ND	0.9	1.7	2.7	3.8	6.1	9.1	12.2
Protective :	structure			Open type	IP20 (for IE	C 60529 oi	רוע)			
Cooling sys	stem			Natural			Forced air			
Approx. mass (kg)			0.8	0.8	1.1	1.3	1.4	2.3	2.4	

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric standard 4-pole motor.

*2 The rated output capacity is the value with respect to 440 V output voltage.

*3

The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. *4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. The maximum point of

the voltage waveform at the output side of the inverter is approximately the power supply voltage multiplied by $\sqrt{2}$.

*5 The amount of braking torque is the average short-term torque (which varies depending on motor loss) that is generated when a motor decelerates in the shortest time by itself from 60 Hz. It is not continuous regenerative torque. The average deceleration torque becomes lower when a motor decelerates from a frequency higher than the base frequency. The inverter is not equipped with a built-in brake resistor. Use an option brake resistor for an operation with large regenerative power The brake unit (FR-BU2) can be also used.

The power supply capacity varies with the value of the input power impedance (including those of the input reactor and cables). *6

The value in parentheses is the rated output current when the low acoustic noise operation is performed with the surrounding air temperature exceeding 30°C while a 3 *7 kHz or higher value is selected in Pr.72 PWM frequency selection.

*8 The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value. *9

To be compliant with the standards, wire the inverter using the following earthing (grounding) and power supply methods: FR-D840-wyz: TN-C, TN-S (neutral earthed), IT (isolated, neutral over impedance)

Single-phase 200 V power supply

	Model	FR-D820S-[]		0.1K-008	0.2K-014	0.4K-025	0.75K-042	1.5K-070	2.2K-100		
Applicab	le motor capac	ity (kW)*1	ND	0.1	0.2	0.4	0.75	1.5	2.2		
	Rated capacity (kVA)*2		ND	0.3	0.5	1.0	1.6	2.7	3.8		
	Rated current (A)*7		ND	0.8	1.4	2.5	4.2	7	10		
	Overload current rating*3 ND		ND	150% 60 s, 200% 0.5 s (inverse-time characteristics) at surrounding air temperature of 50°C							
Output	Rated voltage*4		Three-phase 200 to 240 V								
	Pagaparativa	Brake transistor		Not used		Built-in					
	braking	Maximum brake to reference)*5	orque (ND	150%		100% 50%		20%			
F	Rated input AC voltage/frequency			Single-phase 2	00 to 240 V, 50/	60 Hz					
	Permissible AC voltage fluctuation			170 to 264 V, 50/60 Hz							
	Permissible frequency fluctuation			±5%	_			· ·			
Power supply	Rated input	Without DC reactor	ND	2.3	3.9	6.6	10.9	17.4	24.2		
*9	current (A)*8	With DC reactor		1.1	2.1	3.7	6.7	12.6	17.8		
	Power supply capacity	Without DC reactor	ND	0.5	0.9	1.4	2.4	3.8	5.3		
	(kVA)*ő	With DC reactor		0.2	0.5	0.8	1.5	2.8	3.9		
Protective structure		Open type IP20) (for IEC 60529) only)							
Cooling :	system			Natural					Forced air		
Approx.	mass (kg)			0.5	0.5	0.7	0.8	1.3	1.4		

The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric standard 4-pole motor.

The rated output capacity is the value with respect to 230 V output voltage. *2

*3 The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. For single-phase power input model, the bus voltage decreases to power failure detection level and the load of 100% or higher may not be available if the automatic restart after instantaneous power failure function (**Pr.57**) or the power failure stop function (**Pr.261**) is set and power supply voltage is low while the load increases

*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. The maximum point of

the voltage waveform at the output side of the inverter is approximately the power supply voltage multiplied by $\sqrt{2}$.

The amount of braking torque is the average short-term torque (which varies depending on motor loss) that is generated when a motor decelerates in the shortest time *5 by itself from 60 Hz. It is not continuous regenerative torque. The average deceleration torque becomes lower when a motor decelerates from a frequency higher than the base frequency. The inverter is not equipped with a built-in brake resistor. Use an option brake resistor for an operation with large regenerative power (not available for the FR-D820S-0.1K-008 and FR-D820S-0.2K-014). The brake unit (FR-BU2) can be also used.

The power supply capacity varies with the value of the input power impedance (including those of the input reactor and cables).

*7 The value in parentheses is the rated output current when the low acoustic noise operation is performed with the surrounding air temperature exceeding 30°C while a 3 kHz or higher value is selected in Pr.72 PWM frequency selection.

The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value. *8 *9 To be compliant with the standards, wire the inverter using the following earthing (grounding) and power supply methods

FR-D820S-wyz: TN-C, TN-S, IT (isolated, neutral or phase earthed over impedance)

Model FR-D810W-[]				0.1K-008	0.2K-014	0.4K-025	0.75K-042	
Applicable motor capacity (kW)*1 ND				0.1	0.2	0.4	0.75	
	Rated capacity	/ (kVA)*2	ND	0.3	0.5	1.0	1.6	
Output	Rated current	(A)*6	ND	0.8	1.4	2.5	4.2	
	Overload curre	ent rating*3	ND	150% 60 s, 200% 0.5 s (inverse-time characteristics) at surrounding air temperature of 50°C				
	Rated voltage*8*9			Three-phase 200 to 240 V				
	Pagaparativa	Brake transistor		Not used		Built-in		
	braking	Maximum brake to reference)*4	orque (ND	150%		100%		
	Rated input AC voltage/frequency			Single-phase 10	0 to 120 V, 50/60	Hz		
D	Permissible AC voltage fluctuation			90 to 132 V, 50/60 Hz				
Power supply *10	Permissible fre	equency fluctuation	1	±5%				
ouppij 10	Rated input cu	irrent (A)*7	ND	3.8	6.2	10.5	18.8	
	Power supply capacity (kVA)*5 ND			0.4	0.6	1.1	1.8	
Protective structure			Open type IP20 (for IEC 60529 only)					
Cooling system			Natural					
Approx. mas	ss (kg)			0.5	0.6	0.7	1.3	

Single-phase 100 V power supply

The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric standard 4-pole motor. *1

The rated output capacity is the value with respect to 230 V output voltage. *2

*3 The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. For single-phase power input model, the bus voltage decreases to power failure detection level and the load of 100% or higher may not be available if the automatic restart after instantaneous power failure function (**Pr.57**) or the power failure stop function (**Pr.261**) is set and power supply voltage is low while the load increases

The amount of braking torque is the average short-term torque (which varies depending on motor loss) that is generated when a motor decelerates in the shortest time by itself from 60 Hz. It is not continuous regenerative torque. The average deceleration torque becomes lower when a motor decelerates from a frequency higher than *4 the base frequency. The inverter is not equipped with a built-in brake resistor. Use an option brake resistor for an operation with large regenerative power (not available for the FR-D810W-0.1K-008 and FR-D810W-0.2K-014). The brake unit (FR-BU2) can be also used. The power supply capacity varies with the value of the input power impedance (including those of the input reactor and cables).

The value in parentheses is the rated output current when the low acoustic noise operation is performed with the surrounding air temperature exceeding 30°C while a 3 *6 kHz or higher value is selected in Pr.72 PWM frequency selection.

The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value. For the single-phase 100 V power input models, the maximum output voltage is twice the amount of the power supply voltage.

For the single-phase 100 V power input models, output voltage decreases by applying motor load, and output current increases compared to the three-phase power input models. The load must be reduced so that output current does not exceed the rated motor current. *0

To be compliant with the standards, wire the inverter using the following earthing (grounding) and power supply methods: *10

FR-D810W-wyz: TN-C, TN-S, IT (isolated, neutral or phase earthed over impedance)

• Common specifications

	Control method			Soft-PWM control / High carrier frequency PWM control				
			Induction motor	Selectable among V/F control and Advanced magnetic flux vector control				
			PM motor	PM sensorless vector control				
		nut	Induction motor	0.2 to 590 Hz (The upper-limit frequency is 400 Hz under Advanced magnetic flux vector control.)				
	frea	uency range	PM motor	2 ± 600 Hz (not operable at a frequency horizont that the maximum motor frequency)				
				0.2 to 400 HZ (not operande at a requerity ingine rular une maximum motor inequerity)				
	Frec	quency	Analog input	0.03 Hz / 0 to 60 Hz at 0 to 5 V / 11 bits or 0 to 20 mA / 11 bits (terminals 2 and 4)				
	resc	olution	Digital input					
	-		Analog input					
	Frec	quency	Analog Input	Within 10.2% of the maximum output requercy (25 C ± 10 C)				
rol	acci	uracy	Digital input	JU1% or less of the set output frequency				
nti	Voltage/frequency characteristics		characteristics	Base frequency can be set from 0 to 590 Hz. Constant-torque/variable-torque pattern can be selected (with induction motor				
ő	Starting torque		Induction motor	ony). 1500/				
			Induction motor					
	_	<u> </u>	PINI motor					
	Torc	que boost		Manual torque boost (induction motor only)				
	Acc sett	eleration/deco ing	eleration time	0 to 3600 s (acceleration and deceleration can be set individually), linear or S-pattern acceleration/deceleration modes are available.				
	DC i	injection	Induction motor	Operation frequency (0 to 120 Hz), operation time (0 to 10 s), operation voltage (0% to 30%) variable (The current is limited at the inverter rated current.)				
	Jidr		PM motor	peration time (0 to 10 s) variable, operating voltage (operating current) fixed				
	Stal	I prevention of	peration level	Operation current: 0% to 200% variable, with selectable availability of the function				
	Torque limit level			Torque limit value can be set (0 to 400% variable). (Under PM sensorless vector control only)				
			Analog input	Terminals 2 and 4: 0 to 10 V / 0 to 5 V / 4 to 20 mA (0 to 20 mA)				
	Frec	quency	Digital input	Input using the operation panel or parameter unit				
	setting signal		Pulse input	100k pulses/s (inverter)				
	Start signal			Forward and reverse rotation or start signal automatic self-holding input (3-wire input) can be selected				
	otai	toignai		Toward and reverse relation of sall definitiate our homen mpart (or the monthly can be considered.				
	Input signal			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
Operation	Operational function		ion	Maximum and minimum frequency settings, multi-speed operation, acceleration/deceleration pattern, thermal protection, DC injection brake, starting frequency. JOG operation, output stop (MRS), stall prevention, regeneration avoidance, increased magnetic excitation deceleration, frequency jump, rotation display, automatic restart after instantaneous power failure, remote setting, retry function, carrier frequency selection, fast-response current limit, forward/reverse rotation prevention, operation mode selection, slip compensation, speed smoothing control, traverse, auto tuning, applied motor selection, RS 485 communication, PID control, easy dancer control, cooling fan operation selection, stop selection (deceleration stop/coasting), power failure time deceleration-to-stop function, life diagnosis, maintenance timer, current average monitor, multiple rating, speed control, torque limit, test operation, asfety stop function, emergency drive, Optimum excitation control.				
	al	Open collect	or output	2 Inverter running, Up to frequency, Fault				
	ign	Relay output	•	The output signal can be changed using Pr.190 to Pr.192 (Output terminal function				
	ts	riolay calpai		selection).				
	Outpu	Analog outp	ut	Terminal AM: 0 to +10 V / 12 bits				
Protective functions function		Protective functions	Overcurrent trip during acceleration, overcurrent trip during constant speed, overcurrent trip during deceleration/stop, regenerative overvoltage trip during acceleration, regenerative overvoltage trip during constant speed, regenerative overvoltage trip during deceleration or stop, inverter overload trip (electronic thermal relay function), motor overload trip (electronic thermal relay function), heat sink overheat, undervoltage, input phase loss*1, stall prevention stop, loss of synchronism detection*2, upper limit fault detection, lower limit fault detection, brake transistor fault, output side earth (ground) fault overcurrent, output short circuit, inrush resistance overheat, output phase loss, external thermal relay operation, PTC thermistor operation*2, Internal storage device fault, parameter storage device fault, disconnected PU, retry count excess, CPU fault, abnormal output current detection, INS communication fault, analog input fault, safety circuit fault, speed deviation excess detection*2, PID signal fault, internal circuit fault					
	Warning functions		Warning functions	Fan alarm, stall prevention (overcurrent), stall prevention (overvoltage), regenerative brake pre-alarm*2, electronic thermal relay function pre-alarm, PU stop, maintenance timer alarm, parameter write error, operation panel lock*2, Password locked*2, safety stop, load fault warning*2, emergency drive in operation*2, Continuous operation during communication fault*2, incorrect parameter setting				
ent	Suri	rounding air t	emperature	-20°C to +60°C ND rating: The rated current must be reduced at a temperature above 50°C. SLD rating: The rated current must be reduced at a temperature above 40°C.				
ronm	Suri	rounding air h	umidity	95% RH or less (non-condensing) (With circuit board coating (conforming to IEC 60721-3-3:1994 3C2/3S2) 90% RH or less (non-condensing) (Without circuit board coating)				
ivi	Stor	rage temperat	ure*3	-40°C to +70°C				
ш	Amb	bience		Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)				
	Altit	ude/vibration		Maximum 3000 m*4, 5.9 m/s ² or less at 10 to 55 Hz in X, Y, and Z directions				

*1 *2 *3 *4

Available for the three-phase power input model. Not activated in the inverter in the initial state. Applicable to conditions for a short time, for example, in transit. For the installation at an altitude above 1000 m, consider a 3% reduction in the rated current per 500 m increase in altitude.

• Components of the operation panel

The operation panel cannot be removed from the inverter.

No.	Appearance	Name	Description
(a)	6666	Monitor (4-digit LED)	Shows a numeric value (readout) of a monitor item such as the frequency or a parameter number. (The monitor item can be changed according to the settings of Pr.52, Pr.774 to Pr.776 .)
(b)	Hz A	Unit indication	Hz: ON when the actual frequency is monitored. (Blinks when the set frequency is monitored.) A: ON when the current is monitored. (Both "Hz" and "A" are OFF to indicate a value other than the frequency or the current.)
(c)	HAND AUTO NET	Inverter operation mode LED indicator	HAND: ON when the inverter is in the PU operation mode. AUTO: ON when the inverter is in the External operation mode. (ON when the inverter in the initial setting is powered ON.) NET: ON when the inverter is in the Network operation mode. Both HAND and AUTO are ON when the inverter is in the External/PU combined operation mode 1 or 2.
(d)	MON PRM	Operation panel mode LED indicator	MON: ON only when the first, second, or third monitor is displayed. PRM: ON when the operation panel is in the parameter setting mode. The indicator blinks when the inverter is in the easy setting mode.
(e)	RUN	Operating status indicator	ON or blinks during inverter running. ON: During forward rotation operation. Blinks slowly (1.4-second cycle): During reverse rotation operation. Blinks quickly (0.2-second cycle): Operation is disabled although the start command is given.*1
(f)	PM	Controlled motor type LED indicator	ON when the PM sensorless vector control is selected. The indicator blinks during test operation. The indicator is OFF when the inverter controls the induction motor.
(g)		Setting dial	The setting dial of the Mitsubishi Electric inverters. Turn the setting dial to change the setting of frequency or parameter, etc. Press the setting dial to perform the following operations: To display a set frequency on the LED display in the monitor mode. (The monitor item shown on the display can be changed by using Pr.992 .) To display the present setting during calibration.
(h)		HAND/AUTO key	Switches between the PU operation mode, the PUJOG operation mode, and the External operation mode. The easy setting of the inverter operation mode is enabled by pressing this key simultaneously with the MODE key. Also cancels the PU stop warning.
(i)	MODE	MODE key	Switches the operation panel to a different mode. The easy setting of the inverter operation mode is enabled by pressing this key simultaneously with the HAND/AUTO key. Every key on the operation panel becomes inoperable by holding this key for two seconds. The key lock function is disabled when Pr.161 = "0 (initial setting)".
(j)	SET	SET key	Confirms each selection. When this key is pressed during inverter operation, the monitor item changes. (The monitor item on each screen can be changed according to the settings of Pr.52 , Pr.774 to Pr.776 .)
(k)	RUN	RUN key	Start command The direction of motor rotation depends on the Pr.40 setting. When Pr.40 = "0 (initial value)", the motor starts forward rotation.
(I)	STOP RESET	STOP/RESET key	Stops the operation commands. Used to reset the inverter when the protective function is activated.
(m)		USB connector	FR Configurator2 is available by USB connection. (USB Type-C)

*1 Situations such as when the MRS/X10 signal is input, during the automatic restart after instantaneous power failure, after auto tuning is complete, when "SE" (incorrect parameter setting) alarm occurs.

• Basic operation of the operation panel

*1 For the details of operation modes, refer to the Instruction Manual (Function).

*2 The monitor item can be changed. (Refer to the Instruction Manual (Function).)

*3 For the details of the fault history, refer to the Instruction Manual (Maintenance).

Operation Steps

For more information on the product

Parameter list

For simple variable-speed operation of the inverter, the initial values of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter's setting, change and check can be made on the operation panel.

- (Simple) indicates simple mode parameters. Use Pr.160 User group read selection to indicate the simple mode parameters only (initial setting is to indicate the extended mode parameters).
- The changing of the parameter settings may be restricted in some operating status. Use **Pr.77 Parameter write selection** to change the setting of the restriction.
- Refer to the Instruction Manual (Function) for instruction codes for communication and availability of Parameter clear, all clear, and Parameter copy.

Notation

Mark	Description
[100/200 V class]	Available for the 100/200 V class.
[400 V class]	Available for the 400 V class.
[3-phase]	Available for the three-phase power input model.

Dr	Namo	Sotting range	Initial	Pr.	Name	Setting range	value
ΡΙ.	Name	Setting range	value 6%*1	40	RUN key rotation direction selection	0, 1	0
0	Torque boost Simple	0% to 30%	4%*1	41	Up-to-frequency sensitivity	0% to 100%	10%
	·		3%*1	42	Output frequency detection	0 to 590 Hz	6 Hz
1	Maximum frequency	0 to 120 Hz	120 Hz	43	Output frequency detection for reverse rotation	0 to 590 Hz, 9999	9999
2	Minimum frequency Simple	0 to 120 Hz	0 Hz	44	Second acceleration/ deceleration time	0 to 3600 s	5 s*2 10 s*2
3	Base frequency	0 to 590 Hz	60 HZ	45	Second deceleration time	0 to 3600 s. 9999	9999
4	Multi-speed setting (high	0 to 590 Hz	60 Hz	46	Second torgue boost	0% to 30%, 9999	9999
·	speed) Simple	0 10 000 1.12	00112	47	Second V/F (base frequency)	0 to 590 Hz, 9999	9999
5	Multi-speed setting (middle speed) Simple	0 to 590 Hz	30 Hz	48	Second stall prevention operation level	0% to 400%, 9999	9999
6	Multi-speed setting (low speed)	0 to 590 Hz	10 Hz	51	Second electronic thermal O/L relay Rated second motor current	0 to 500 A, 9999	9999
7	Acceleration time	0 to 3600 s	5 s*2 10 s*2	-	Operation panel main monitor	0, 5 to 14, 17, 18, 20, 23 to 25, 32, 33,	_
8	Deceleration time	0 to 3600 s	5 s*2 10 s*2	52	selection	37, 38, 44, 50 to 55, 61, 62, 64, 67, 68, 91, 97, 98, 100	0
9	Electronic thermal O/L relay Simple	0 to 500 A	Inverter rated	53	Frequency / rotation speed unit switchover	0, 1, 4	0
-	Rated motor current Simple		current	55	Frequency monitoring reference	0 to 590 Hz	60 Hz
10	DC injection brake operation frequency	0 to 120 Hz	3 Hz	56	Current monitoring reference	0 to 500 A	Inverter rated current
11	DC injection brake operation	0 to 10 s	0.5 s	57	Restart coasting time	0, 0.1 to 30 s, 9999	9999
			60/ +2	58	Restart cushion time	0 to 60 s	1 s
12	DC injection brake operation	0% to 30%	0%*3	59	Remote function selection	0 to 4	0
13	Starting frequency	0 to 60 Hz	4%*3 05 Hz	60	Energy saving control selection	0, 9	0
13	L oad pattern selection	0 to 00 112	0.3112	65	Retry selection	0 to 5	0
15	Jog frequency	0 to 590 Hz	5 Hz	66	Stall prevention operation	0 to 590 Hz	60 Hz
16	Jog acceleration/deceleration time	0 to 3600 s	0.5 s	67	Number of retries at fault	0 to 10, 101 to 110	0
17	MRS/X10 terminal input	0 to 5	0	68	Retry waiting time	0 1 to 600 s	1 6
17	selection	0105	U	69	Retry count display erase	0.1 10 000 3	0
18	High speed maximum frequency	0 to 590 Hz	120 Hz	70	Special regenerative brake duty	0% to 100%	0%
19	Base frequency voltage	0 to 1000 V, 8888, 9999	9999			0, 3, 5, 6, 10, 13, 15, 16, 20, 23, 40,	0.0
20	Acceleration/deceleration reference frequency Stall prevention operation level	1 to 590 Hz	60 Hz	71	Applied motor	43, 50, 53, 70, 73, 1140, 8090, 8093,	0
22	(Torque limit level)	0% to 400%	150%	72	PW/M frequency selection	9090, 9093 0 to 15	1
	Stall prevention operation level			73	Analog input selection		1
23	compensation factor at double	0% to 200%, 9999	9999	74	Input filter time constant	0 to 8	1
24 to	Multi-speed setting (speed 4 to	0 to 590 Hz, 9999	9999		Reset selection/disconnected PU detection/PU stop selection	0 to 3, 14 to 17	14
21	Acceleration/deceleration pattern			75	Reset selection		0
29	selection	0 to 2	0		Disconnected PU detection	0, 1	0
30	Regenerative function selection	0 to 2	0]	PU stop selection		1
31	Frequency jump 1A	0 to 590 Hz, 9999	9999	77	Parameter write selection	0 to 2	0
32	Frequency jump 1B	0 to 590 Hz, 9999	9999	78	Reverse rotation prevention	0 to 2	0
33	Frequency jump 2A	0 to 590 Hz, 9999	9999	↓	Operation mode		
34	⊢requency jump 2B	U to 590 Hz, 9999	9999	79		0 to 4, 6, 7	0
35	Frequency jump 3A	U TO 590 HZ, 9999	9999	┨ ┢────	selection	$0.1 \pm 19.5 \text{ k/M}$	
36	Frequency Jump 3B	U to 590 Hz, 9999	9999	80	Motor capacity	0.1 10 18.5 KVV, 9999	9999
51	opeeu uispiay	0.01 10 3330	1000	」	1		1

7

Pr.	Name	Setting range	Initial value
81	Number of motor poles	2, 4, 6, 8, 10, 12, 9999	9999
82	Motor excitation current	0 to 500 A 9999	9999
83	Rated motor voltage	0 to 1000 V	[100/200 V class] 200 V [400 V class] 400 V
84	Rated motor frequency	10 to 400 Hz, 9999	9999
89	Speed control gain (Advanced magnetic flux vector)	0% to 200%, 9999	9999
90	Motor constant (R1)	0 to 50 Ω, 9999	9999
91	Motor constant (R2)	0 to 50 Ω, 9999	9999
92	Motor constant (L1)/d-axis inductance (Ld)	0 to 6000 mH, 9999	9999
93	Motor constant (L2)/q-axis inductance (Lq)	0 to 6000 mH, 9999	9999
94	Motor constant (X)	0% to 100%, 9999	9999
96	Auto tuning setting/status	0, 1, 11	0
117	RS-485 communication station number	0 to 31 (0 to 247)	0
118	RS-485 communication speed	48, 96, 192, 384, 576, 768, 1152	192
	RS-485 communication stop bit length / data length	0, 1, 10, 11	1
119	RS-485 communication data length	0, 1	0
	RS-485 communication stop bit length	0, 1	1
120	RS-485 communication parity check	0 to 2	2
121	RS-485 communication retry count	0 to 10, 9999	1
122	RS-485 communication check time interval	0, 0.1 to 999.8 s, 9999	0
123	RS-485 communication waiting time setting	0 to 150 ms, 9999	9999
124	RS-485 communication CR/LF selection	0 to 2	1
125	Terminal 2 frequency setting gain frequency	0 to 590 Hz	60 Hz
126	Terminal 4 frequency setting gain frequency Simple	0 to 590 Hz	60 Hz
127	PID control automatic switchover	0 to 590 Hz, 9999	9999
128	PID action selection	0, 20, 21, 40 to 43, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	0
129	PID proportional band	0.1% to 1000%, 9999	100%
130	PID integral time	0.1 to 3600 s, 9999	1 s
131	PID upper limit	0% to 100%, 9999	9999
132	PID lower limit	0% to 100%, 9999	9999
133	PID action set point	0% to 100%, 9999	9999
134	PID differential time	0.01 to 10 s, 9999	9999
130	Automatic switchover frequency	0 to 60 Hz 9999	1 S 9999
145	from inverter to bypass operation	0 to 7	
145	PU display language selection	0 10 7 0% to 400%	— 150%
150	Output current detection signal	0 to 10 s	0 s
152	Zero current detection level	0% to 400%	5%
153	Zero current detection time	0 to 10 s	0.5 s
154	Voltage reduction selection	1, 11	1
156	Stall prevention operation selection	0 to 31, 100, 101	0
157	OL signal output timer	0 to 25 s. 9999	0 s
158	AM terminal function selection	1 to 3, 5 to 14, 17, 18, 21, 24, 32, 33, 37, 50, 52, 53, 61, 62, 67, 97, 98	1
160	User group read selection Simple	0, 1, 9999	0
161	Frequency setting/key lock operation selection	0, 1, 10, 11	0

Pr.	Name	Setting range	Initial value
162	Automatic restart after instantaneous power failure selection	0, 1, 10, 11	0
165	Stall prevention operation level for restart	0% to 400%	150%
166	Output current detection signal retention time	0 to 10 s, 9999	0.1 s
167	Output current detection operation selection	0, 1, 10, 11	0
168 169	Parameter for manufacturer settir	ng. Do not set.	
170	Watt-hour meter clear	0, 10, 9999	9999
171	Operation hour meter clear	0, 9999	9999
172	User group registered display/ batch clear	9999, (0 to 16)	0
1/3	User group registration	0 to 1999, 9999	9999
174	User group clear	0 to 5 7 8 10 12	9999
178	STF terminal function selection	14, 16, 18, 24, 25, 27, 30, 37, 46, 47, 60, 62, 64 to 67, 72, 84, 9999	60
179	STR terminal function selection	0 to 5, 7, 8, 10, 12, 14, 16, 18, 24, 25, 27, 30, 37, 46, 47, 61, 62, 64 to 67, 72, 84, 9999	61
180	RL terminal function selection	0 to 5, 7, 8, 10, 12,	0
181	RM terminal function selection	27, 30, 37, 46, 47.	1
182	RH terminal function selection	62, 64 to 67, 72, 84, 9999	2
185	NET X1 input selection		
186	NET X2 input selection	0 to 4, 8, 14, 18, 24,	
187	NET X4 input selection	27, 30, 37, 46, 47, 64, 72, 84, 9999	9999
188	NET X4 input selection	04, 72, 04, 3333	
100	NET AS input selection	0 1 2 4 7 9 11 to	0
191	FU terminal function selection	34, 40, 41, 46 to 48, 57, 64 to 66, 70, 79 to 81, 90 to 93, 95, 96, 98, 99, 100, 101, 103, 104, 107, 108, 111 to 116, 125, 126, 134, 140, 141, 146 to 148, 157, 164 to 166, 170, 179 to 181, 190 to 193, 195, 196, 198, 199, 206, 207, 211 to 213, 306, 307, 311 to 313, 9999	4
192	ABC terminal function selection	0, 1, 3, 4, 7, 8, 11 to 16, 18, 19, 25, 26, 34, 40, 41, 46 to 48, 57, 64 to 66, 70, 79 to 81, 90, 91, 95, 96, 98, 99, 100, 101, 103, 104, 107, 108, 111 to 116, 125, 126, 134, 140, 141, 146 to 148, 157, 164 to 166, 170, 179 to 181, 190, 191, 195, 196, 198, 199, 206, 207, 211 to 213, 306, 307, 311 to 313, 9999	99
193	NET Y1 output selection	0, 1, 3, 4, 7, 8, 11 to	9999
194	NET V2 output selection	34, 40, 41, 46 to 48.	9999
192		57, 64 to 66, 70, 79	9999
196	NET Y4 output selection	10 51, 90 to 93, 95, 98, 99, 100, 101, 103, 104, 107, 108, 111 to 116, 125, 126, 134, 140, 141, 146 to 148, 157, 164 to 166, 170, 179 to 181, 190 to 193, 195, 198, 199, 206, 207, 211 to 213, 306, 307, 311 to 313, 9999	9999
232 to 239	Multi-speed setting (speed 8 to speed 15)	0 to 590 Hz, 9999	9999

Pr.	Name	Setting range	Initial value
240	Soft-PWM operation selection	0, 1	1
241	Analog input display unit	0, 1	0
244	Cooling fan operation selection	0, 1	1
245	Rated slip	0% to 50%, 9999	9999
246	Slip compensation time constant	0.01 to 10 s	0.5 s
247	Constant output range slip compensation selection	0, 9999	9999
249	Earth (ground) fault detection at start	0, 1	0
250	Stop selection	0 to 100 s, 1000 to 1100 s, 8888, 9999	9999
251	Output phase loss protection selection	0, 1	1
255	Life alarm status display	(0 to 367)	0
256	display	(0% to 100%)	100%
257	display	(0% to 100%)	100%
258	Main circuit capacitor life display	(0% to 100%)	100%
259	Main circuit capacitor life measuring	0, 1 (2, 3, 8, 9)	0
260	PWM frequency automatic switchover	0, 10	10
261	Power failure stop selection	0 to 2	0
267	Terminal 4 input selection	0 to 2	0
268	Parameter for manufacturer settin	0, 1, 9999 ng Do not set	9999
289	Inverter output terminal filter	5 to 50 ms. 9999	9999
291	Pulse train input selection	0, 1	0
295	Frequency change increment amount setting	0, 0.01, 0.1, 1, 10	0
296	Password lock level	1 to 6, 99, 101 to 106, 199, 9999	9999
297	Password lock/unlock	(0 to 5), 1000 to 9998, 9999	9999
298	Frequency search gain	0 to 32767, 9999	9999
299	Rotation direction detection selection at restarting	0, 1, 9999	0
338	Communication operation command source	0, 1	0
339	Communication speed command source	0 to 2	0
340	Communication startup mode selection	0, 1, 10	0
342	Communication EEPROM write selection	0, 1	0
343	Communication error count	(0 to 999)	0
374	Overspeed detection level	0 to 400 Hz, 9999	9999
304 385	Frequency for zero input pulse	0 to 250 0 to 590 Hz	0 0 Hz
386	Frequency for maximum input	0 to 590 Hz	60 Hz
450	Second applied motor	0, 10, 9999	9999
495	Remote output selection	0, 1, 10, 11	0
496	Remote output data 1	0 to 4095	0
502	Stop mode selection at communication error	0 to 2, 6	0
503	Maintenance timer	0 (1 to 9998)	0
504	Maintenance timer warning output set time	0 to 9998, 9999	9999
505	Speed setting reference	1 to 590 Hz	60 Hz
506	capacitor residual life	(0% to 100%)	100%
507	life	(0% to 100%)	100%
509	Display power cycle life	(U% to 100%)	100%
514	waiting time	0.1 to 600 s, 9999	9999
515	Emergency drive dedicated retry count	1 to 200, 9999	1
523	Emergency drive mode selection	100, 111, 112, 121, 122, 200, 211, 212, 221, 222, 300, 311, 312, 321, 322, 400, 411, 412, 421, 422, 9999	9999
524	Emergency drive running speed	0 to 590 Hz, 9999	9999
547	USB communication station number	0 to 31	0

Pr.	Name	Setting range	Initial value
548	USB communication check time interval	0 to 999.8 s, 9999	9999
549	Protocol selection	0, 1	0
551	PU mode operation command source selection	2 to 4, 9999	9999
552	Frequency jump range	0 to 30 Hz, 9999	9999
553	PID deviation limit	0% to 100%, 9999	9999
554	PID signal operation selection	0 to 3, 10 to 13	0
555	Current average time	0.1 to 1 s	1 s
556	Data output mask time	0 to 20 s	0 s Inventor
557	Current average value monitor signal output reference current	0 to 500 A	rated current
561	PTC thermistor protection level	0.5 to 30 kΩ, 9999	9999
563	Energization time carrying-over times	(0 to 65535)	0
564	Operating time carrying-over times	(0 to 65535)	0
570	Multiple rating setting [3-phase]	0, 2	2
571	Holding time at a start	0 to 10 s, 9999	9999
575	Output interruption detection time	0 to 3600 s, 9999	1 s
576	level	0 to 590 Hz	0 Hz
577	Output interruption cancel level	900% to 1100%	1000%
592	I raverse function selection	U to 2	0
593	Maximum amplitude amount	0% to 25%	10%
594	during deceleration	0% to 50%	10%
595	during acceleration	0% to 50%	10%
590 507	Amplitude acceleration time	0.1 to 3600 s	5 S
600	First free thermal reduction	0 to 590 Hz, 9999	9999
601	First free thermal reduction ratio	1% to 100%	100%
602	First free thermal reduction	0 to 590 Hz, 9999	9999
603	First free thermal reduction ratio	1% to 100%	100%
604	First free thermal reduction	0 to 590 Hz, 9999	9999
607	Motor permissible load level	110% to 250%	150%
608	Second motor permissible load	110% to 250%,	9999
609	PID set point/deviation input selection	2, 3	2
610	PID measured value input selection	2, 3	3
611	Acceleration time at a restart	0 to 3600 s, 9999	9999
631	Inverter output fault detection enable/disable selection	0, 1	0
643	Voltage compensation amount setting	0% to 150%, 9999	9999
653	Speed smoothing control	0% to 200%	0%
654	Speed smoothing cutoff frequency	0 to 120 Hz	20 Hz
660	Increased magnetic excitation deceleration operation selection	0, 1	0
661	Magnetic excitation increase rate	0% to 40%, 9999	9999
662	Increased magnetic excitation current level	0% to 200%	100%
663	Control circuit temperature signal output level	0 to 100°C	0°C
665	Regeneration avoidance frequency gain	0% to 200%	100%
673	SF-PR slip amount adjustment operation selection	2, 4, 6, 9999	9999
674	SF-PR slip amount adjustment gain	0% to 500%	100%
692	Second free thermal reduction frequency 1	0 to 590 Hz, 9999	9999
693	Second free thermal reduction ratio 1	1% to 100%	100%
694	Second free thermal reduction frequency 2	0 to 590 Hz, 9999	9999
695	Second free thermal reduction ratio 2	1% to 100%	100%
696	Second free thermal reduction frequency 3	0 to 590 Hz, 9999	9999

Pr.	Name	Setting range	Initial value
699	Input terminal filter	5 to 50 ms, 9999	9999
702	Maximum motor frequency	0 to 400 Hz, 9999	9999
706	Motor induced voltage constant (phi f)	0 to 5000 mV (rad/ s), 9999	9999
707	Motor inertia (integer)	10 to 999, 9999	9999
711	Motor Ld decay ratio	0% to 100%, 9999	9999
/12	Starting resistance tuning	0% 10 100%, 9999	9999
717	compensation coefficient	0% to 200%, 9999	9999
721	detection pulse width	0 to 6000 µs, 9999	9999
124		100% to 500%	9999
725	Motor protection current level	9999 0 to 43, 9999	9999 0000
100	Operation papel monitor	0 to 40, 3000	3333
774	selection 1	18, 20, 23 to 25, 32, 33, 37, 38, 44, 50 to	9999
775	selection 2	55, 61, 62, 64, 67, 68, 91, 97, 98, 100,	9999
776	selection 3	9999	9999
779	communication error	0 to 590 Hz, 9999	9999
791	range	0 to 3600 s, 9999	9999
792	range	0 to 3600 s, 9999	9999
799	Pulse increment setting for output power	0.1, 1, 10, 100, 1000 kWh	1 kWh
800	Control method selection	10, 19, 20, 40	40
810	selection	0	0
811	Set resolution switchover	0, 10	0
815	Provide antrol D gain	0% to 400%, 9999	9999
020 921	Speed control integral time	0 % 10 1000 %	23%
824	Torque control P gain (current	0 to 20 s	0.333 S 50%
825	Torque control integral time	0 to 500 ms	20 ms
859	Torque current/Rated PM motor	0 to 500 A, 9999	9999
865	Low speed detection	0 to 590 Hz	15 Hz
866	Torque monitoring reference	0% to 400%	150%
870	Speed detection hysteresis	0 to 15 Hz	0 Hz
872	Input phase loss protection	0 1	1
074	selection [3-phase]	0, 1	
874	OLT level setting	0% to 400%	150%
882	Regeneration avoidance	0 to 2	0
883	Regeneration avoidance operation level	300 to 800 V	[100/200 V class] 400 V [400 V class] 780 V
885	Regeneration avoidance compensation frequency limit value	0 to 45 Hz, 9999	6 Hz
886	Regeneration avoidance voltage gain	0% to 200%	100%
888	Free parameter 1	0 to 9999	9999
889	Free parameter 2	0 to 9999	9999
890	Internal storage device status indication	(0 to 255)	0
891	Cumulative power monitor digit shifted times	0 to 4, 9999	9999
892	Load factor	30% to 150%	100%
893	Energy saving monitor reference (motor capacity)	0.1 to 18.5 kW	Applicable motor capacity
894	Control selection during commercial power-supply operation	0 to 3	0
895	Power saving rate reference value	0, 1, 9999	9999
896	Power unit cost / CO2 emission coefficient	0 to 500, 9999	9999
897	Energy saving monitor average time	0 to 1000 h, 9999	9999
898	Energy saving cumulative monitor clear	0, 1, 10, 9999	9999

Pr.	Name	Setting range	Initial value
899	Operation time rate (estimated	0% to 100%, 9999	9999
000	value)	0.1	4
990	PU buzzer control	0, 1 0 to 62	1
991		0 to 3 5 to 14 17	50
992	Operation panel setting dial push monitor selection	18, 20, 23 to 25, 32, 33, 37, 38, 44, 50 to 55, 61, 62, 64, 67, 68, 91, 97, 98, 100	0
997	Fault initiation	0 to 255, 9999	9999
	PM parameter	0, 3044, 3144,	-
998	initialization Simple	8009, 8109, 9009, 9109	0
999	Automatic parameter setting Simple	10, 12, 20, 21, 9999	9999
1002	Lq tuning target current adjustment coefficient	50% to 150%, 9999	9999
1006	Clock (year)	2000 to 2099	2000
1007	Clock (month, day)	Jan. 1 to Dec. 31	101
1008	Clock (hour, minute)	0:00 to 23:59	0
1013	Running speed after recovery from emergency drive undervoltage	0 to 590 Hz	60 Hz
1015	Integral stop selection at limited frequency	0 to 2, 10 to 12	10
1016	PTC thermistor protection detection time	0 to 60 s	0 s
1020	Trace operation selection	0 to 3	0
1022	Sampling cycle	1, 2, 5, 10, 50, 100, 500, 1000	1
1023	Number of analog channels	1 to 8	4
1024	Sampling auto start	0, 1	0
1025	Trigger mode selection	0 to 4	0
1026	trigger	0% to 100%	90% 201
1027	Analog source selection (7ch)	1 to 3 5 to 1/ 17	201
1020	Analog source selection (3ch)	18, 20, 23, 24, 32,	203
1030	Analog source selection (4ch)	33, 37, 52 to 54, 61,	204
1031	Analog source selection (5ch)	62, 64, 67, 68, 91, 97, 98, 201 to 210	205
1032	Analog source selection (6ch)	212, 213, 230 to	206
1033	Analog source selection (7ch)	232, 235 to 238	207
1034	Analog source selection (8ch)		208
1035	Analog trigger channel	1 to 8	1
1036	selection	0, 1	0
1037	Analog trigger level	600 to 1400	1000
1038	Digital source selection (1ch)		0
1039	Digital source selection (201)		0
1040	Digital source selection (3ch)		0
1042	Digital source selection (5ch)	0 to 255	0
1043	Digital source selection (6ch)		0
1044	Digital source selection (7ch)		0
1045	Digital source selection (8ch)		0
1046	Digital trigger channel	1 to 8	1
1047	Digital trigger operation selection	0, 1	0
1048	Display-off waiting time	0 to 60, 100 to 160 min	0 min
1106	Torque monitor filter	0 to 5 s, 9999	9999
1107	Running speed monitor filter	0 to 5 s, 9999	9999
1108	Excitation current monitor filter	0 to 5 s, 9999	9999
1200	AM output offset calibration	4000 to 5000	4499
1412	(phi f) exponent	0 to 2, 9999	9999
1480	measurement mode	85)	0
1481	Load characteristics load	0% to 400%, 8888, 9999	9999
1482	Load characteristics load reference 2	0% to 400%, 8888, 9999	9999
1483	Load characteristics load reference 3	0% to 400%, 8888, 9999	9999
1484	Load characteristics load reference 4	U% to 400%, 8888, 9999	9999
1485	Load characteristics load reference 5	0% to 400%, 8888, 9999	9999
1486	Load characteristics maximum frequency	0 to 590 Hz	60 Hz

Pr.	Name	Setting range	Initial value
1487	Load characteristics minimum frequency	0 to 590 Hz	6 Hz
1488	Upper limit warning detection width	0% to 400%, 9999	20%
1489	Lower limit warning detection width	0% to 400%, 9999	20%
1490	Upper limit fault detection width	0% to 400%, 9999	9999
1491	Lower limit fault detection width	0% to 400%, 9999	9999
1492	Load status detection signal delay time / load reference measurement waiting time	0 to 60 s	1 s
1499	Parameter for manufacturer settir	ng. Do not set.	
C1 (901)*4	AM terminal calibration		_
C2 (902)*4	Terminal 2 frequency setting bias frequency	0 to 590 Hz	0 Hz
C3 (902)*4	Terminal 2 frequency setting bias	0% to 300%	0%
125 (903)*4	Terminal 2 frequency setting gain frequency	0 to 590 Hz	60 Hz
C4 (903)*4	Terminal 2 frequency setting gain	0% to 300%	100%
C5 (904)*4	Terminal 4 frequency setting bias frequency	0 to 590 Hz	0 Hz
C6 (904)*4	Terminal 4 frequency setting bias	0% to 300%	20%
126 (905)*4	Terminal 4 frequency setting gain frequency	0 to 590 Hz	60 Hz
C7 (905)*4	Terminal 4 frequency setting gain	0% to 300%	100%
C42 (934)*4	PID display bias coefficient	0 to 500, 9999	9999
C43 (934)*4	PID display bias analog value	0% to 300%	20%
C44 (935)*4	PID display gain coefficient	0 to 500, 9999	9999
C45 (935)*4	PID display gain analog value	0% to 300%	100%
PR.CL	Parameter clear	(0), 1	0
ALLC	All parameter clear	(0), 1	0
ER.CL	Fault history clear	(0), 1	0
PR.CH	Initial value change list		0
PM	PM parameter initialization	0	0
AUTO	Automatic parameter setting		-
PR.GR	Parameter initial value group setting	1, 2	1
PR.MD	Group parameter setting	(0), 1, 2	0

*1

Differs depending on the capacity. 6%: FR-D820-0.75K-042 or lower, FR-D840-0.75K-022 or lower, FR-D820S-0.75K-042 or lower, and FR-D810W-0.75K-042 or lower 4%: FR-D820-1.5K-070 to FR-D820-3.7K-165, FR-D840-1.5K-037 to FR-7.6. TRED6261 TRED6205-1.5K-070 or higher 3%: FR-D8205-5.5K-238, FR-D820-7.5K-318, FR-D840-5.5K-120, and FR-D840-7.5K-163

*2

D840-7.5K-163 Differs depending on the capacity. 5 s: FR-D820-3.7K-165 or lower, FR-D840-3.7K-081 or lower, FR-D820S-2.2K-100 or lower, and FR-D810W-0.75K-042 or lower 10 s: FR-D820-5.5K-238, FR-D820-7.5K-318, FR-D840-5.5K-120, and FR-

D840-7.5K-163 Differs depending on the capacity. 6%: FR-D820-0.2K-014 or lower, FR-D820S-0.2K-014 or lower, and FR-*3

D810W-0.2K-014 or lower 4%: FR-D820-0.4K-025 to FR-D820-7.5K-318, FR-D840-0.4K-012 to FR-D840-7.5K-163, FR-D820S-0.4K-025 or higher, and FR-D810W-0.4K-025 or higher

On the LCD operation panel or the parameter unit used as the command source, the parameter number in parentheses appears instead of that starting *4 with the letter C.

• Error message

A message regarding operational fault or setting fault on the operation panel is displayed. The inverter output is not shut off.

Operation panel indication		Name	Description
Kold	HOLD	Operation panel lock	Operation lock is set. Operation other than pressing the STOP/RESET key is disabled.
Loĺď	LOCD	Password locked	Password function is active. Display and setting of parameters are restricted.
€- ¦ ₀ €-4	Er1 to Er4	Parameter write error	Appears when an error occurred during parameter writing.
Err.	Err.	Error	 The RES signal is turned ON. This error may occur when the voltage at the input side of the inverter drops.

• Warning

The inverter output is not shut off even when a warning is displayed. However, failure to take appropriate measures will lead to a fault.

Operation panel indication		Name	Data code	Description
oll	OLC	Stall prevention (overcurrent)	1 (H01)	When the output current of the inverter increases, the stall prevention (overcurrent) function is activated.
οίυ	OLV	Stall prevention (overvoltage)	2 (H02)	 When the output voltage of the inverter increases, the stall prevention (overvoltage) function is activated. The regeneration avoidance function is activated due to excessive regenerative power of the motor.
rb	RB	Regenerative brake pre- alarm	3 (H03)	Appears if the actual regenerative brake duty reaches or exceeds 85% of the reference regenerative brake duty (100%) determined by the settings of Pr.30 Regenerative function selection and Pr.70 Special regenerative brake duty . If the regenerative brake duty reaches 100%, a regenerative overvoltage (E.OV[]) occurs.
ГH	ТН	Electronic thermal relay function pre-alarm	4 (H04)	Appears if the cumulative value of the electronic thermal O/L relay reaches or exceeds 85% of the preset level of Pr.9 Electronic thermal O/L relay . If the specified value is reached, the protection circuit is activated to shut off the inverter output.
PS	PS	PU stop	6 (H06)	 The motor is stopped using the STOP/RESET key in the mode other than the PU operation mode. (To enable the STOP/RESET key in the mode other than the PU operation mode, set Pr.75 Reset selection/disconnected PU detection/PU stop selection.) The motor is stopped by the emergency stop function.
N .	MT	Maintenance timer*1	8 (H08)	Appears when the inverter's cumulative energization time reaches or exceeds the parameter set value.
[F	CF	Continuous operation during communication fault	10 (H0A)	Appears when the operation continues while an error is occurring in the communication line (when Pr.502 = "6").
58	SA	Safety stop	12 (H0C)	Appears when safety stop function is activated (during output shutoff).
LdF	LDF	Load fault warning	26 (H1A)	Appears when the load is deviated from the detection width set in Pr.1488 Upper limit warning detection width or Pr.1489 Lower limit warning detection width .
58	SE	Incorrect parameter setting	48 (H30)	Appears when a start command is input while the condition to start operation is not satisfied in the motor setting (Pr.71, Pr.80, or Pr.81) for the control method selected in Pr.800 .
110 	UV	Undervoltage		If the power supply voltage of the inverter decreases, the control circuit will not perform normal functions. In addition, the motor torque will be insufficient and/or heat generation will increase. To prevent this, if the power supply voltage decreases to about 115 VAC (230 VAC for the 400 V class, 58 VAC for the 100 V class) or below (when the PM sensorless vector control is selected: about 156 VAC (311 VAC for the 400 V class) or below), this function shuts off the inverter output and "UV" is displayed (on the operation panel only). The warning is removed when the voltage returns to normal.
60	ED	Emergency drive in operation	24 (H18)	Appears during emergency drive operation.

• Alarm

The inverter output is not shut off. An Alarm (LF) signal can also be output with a parameter setting.

Operation panel indication		Name	Description
Fn	FN	Fan alarm	For the inverter that contains a cooling fan, FN appears on the operation panel when the cooling fan stops due to a fault, low rotation speed, or different operation from the setting of Pr.244 Cooling fan operation selection .

• Fault

When a protective function is activated, the inverter output is shut off and a Fault (ALM) signal is output. The data code is used for checking the fault detail via communication or with **Pr.997 Fault initiation**.

Operation pa	nel indication	Name	Data code	Description
1 Jo.3	E.OC1	Overcurrent trip during acceleration	16 (H10)	When the inverter output current reaches or exceeds approximately 150% (SLD rating) or 230% (ND rating) of the rated current during acceleration, the protection circuit is activated and the inverter output is shut off.
£.o[2	E.OC2	Overcurrent trip during constant speed	17 (H11)	When the inverter output current reaches or exceeds approximately 150% (SLD rating) or 230% (ND rating) of the rated current during constant-speed operation, the protection circuit is activated and the inverter output is shut off.
8.083	E.OC3	Overcurrent trip during deceleration or stop	18 (H12)	When the inverter output current reaches or exceeds approximately 150% (SLD rating) or 230% (ND rating) of the rated current during deceleration (other than acceleration or constant speed), the protection circuit is activated and the inverter output is shut off.
E.ou I	E.OV1	Regenerative overvoltage trip during acceleration	32 (H20)	
E.ou2	E.OV2	Regenerative overvoltage trip during constant speed	33 (H21)	or exceed approximately 415 V (200 V class) or 810 V (400 V class), the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.
E.o u 3	E.OV3	Regenerative overvoltage trip during deceleration or stop	34 (H22)	
E.Г НГ	E.THT	Inverter overload trip (electronic thermal relay function)*2	48 (H30)	If the temperature of the output transistor elements exceeds the protection level with a rated output current or higher flowing without the overcurrent trip (E.OC[]), the inverter output is stopped. (Overload capacity 150% 60 s)
E.F H N	E.THM	Motor overload trip (electronic thermal relay function)*2	49 (H31)	The electronic thermal O/L relay function in the inverter detects motor overheat, which is caused by overload or reduced cooling capability during low-speed operation. When the cumulative heat value reaches 85% of the Pr.9 Electronic thermal O/L relay setting, pre-alarm (TH) is output. When the accumulated value reaches the specified value, the protection circuit is activated to stop the inverter output.
8.F. n	E.FIN	Heat sink overheat	64 (H40)	When the heat sink overheats, the temperature sensor is activated, and the inverter output is stopped.
8.855	E.UVT	Undervoltage	81 (H51)	When a PM motor is used, the protective function is activated in the following case: a fault such as power failure or voltage drop occurs, the converter voltage drops to cause the motor to coast, and restarting and coasting are repeated by the automatic restart after instantaneous power failure function.
E., L.F.	E.ILF	Input phase loss	82 (H52)	When Pr.872 Input phase loss protection selection = "1" (function enabled) and one of the three-phase power input is lost, the inverter output is shut off. This protective function is not available when "0" is set in Pr.872 . (Available only for the three-phase power input model.)
E.o.L.F	E.OLT	Stall prevention stop	96 (H60)	When induction motors are used, if the output frequency has fallen to 1.0 Hz by stall prevention operation and remains for 3 seconds, a fault (E.OLT) appears and the inverter output is shut off. When speed control is performed for PM motors, a fault (E.OLT) appears and the inverter output is shut off if frequency drops to the Pr.865 Low speed detection (initial value is 1.5 Hz) setting by torque limit operation and the output torque exceeds the Pr.874 OLT level setting (initial value is 150%) setting and remains 3 seconds.
E.Sof	E.SOT	Loss of synchronism detection	97 (H61)	The inverter output is shut off when the motor operation is not synchronized. (This function is only available under PM sensorless vector control.)
ELUP	E.LUP	Upper limit fault detection *1	98 (H62)	The inverter output is shut off when the load exceeds the upper limit fault detection range.
EL din	E.LDN	Lower limit fault detection *1	99 (H63)	The inverter output is shut off when the load falls below the lower limit fault detection range.
8.68	E.BE	Brake transistor alarm detection	112 (H70)	The inverter output is shut off if a fault due to damage of the brake transistor and such occurs in the brake circuit. In such a case, the power supply to the inverter must be shut off immediately.
8.G.F	E.GF	Output side earth (ground) fault overcurrent	128 (H80)	The inverter output is shut off if an earth (ground) fault overcurrent flows due to an earth (ground) fault that occurred on the inverter's output side (load side).
E.L F	E.LF	Output phase loss	129 (H81)	The inverter output is shut off if one of the three phases (U, V, W) on the inverter's output side (load side) is lost.
E.o.H.ſ	E.OHT	External thermal relay operation*1	144 (H90)	The inverter output is shut off if the external thermal relay provided for motor overheat protection or the internally mounted thermal relay in the motor, etc. switches ON (contacts open).
2.79	E.PTC	PTC thermistor operation *1	145 (H91)	The inverter output is shut off if resistance of the PTC thermistor connected between terminal 2 and terminal 10 is equal to or higher than the Pr.561 PTC thermistor protection level setting for a continuous time equal to or longer than the setting value in Pr.1016 PTC thermistor protection detection time .

Operation panel in	dication	Name	Data code	Description
8.986	E.PE6	Internal storage device fault	172 (HAC)	This protective function is activated by an inverter reset if writing data fails due to power-OFF or a data fault occurs in the storage device during parameter operations*3 or while the set frequency is written.
E.P.E	E.PE	Parameter storage device fault (control circuit board)	176 (HB0)	The inverter output is shut off if a fault occurs in the parameter stored. (EEPROM failure)
E.P.U.E	E.PUE	PU disconnection	177 (HB1)	 The inverter output is shut off if communication between the inverter and PU is suspended, e.g. the cable is disconnected from the PU connector, when the disconnected PU detection function is valid in Pr.75 Reset selection/ disconnected PU detection/PU stop selection. The inverter output is shut off if communication errors occurred consecutively for more than permissible number of retries when Pr.121 RS-485 communication retry count ≠ "9999" during the RS-485 communication via the PU connector. The inverter output is shut off if communication is broken within the period of time set in Pr.122 RS-485 communication check time interval during the RS-485 communication via the PU connector.
E.r E [E.RET	Retry count excess*1	178 (HB2)	The inverter output is shut off if the operation cannot be resumed properly within the number of retries set in Pr.67 Number of retries at fault occurrence . This function is available when Pr.67 is set.
539.3	E.PE2	Parameter storage device fault (main circuit board)	179 (HB3)	The inverter output is shut off if a fault occurs in the inverter model information.
8.C P U	E.CPU	CPU fault	192 (HC0)	The inverter output is shut off if the communication fault of the built-in CPU occurs.
6.C do	E.CDO	Abnormal output current detection*1	196 (HC4)	The inverter output is shut off if the output current exceeds the Pr.150 Output current detection level setting. This function is available when "1" is set in Pr.167 Output current detection operation selection .
E. oH	E.IOH	Inrush current limit circuit fault	197 (HC5)	The inverter output is shut off when a failure occurs in the inrush current limit circuit. The inrush current limit circuit is faulty.
E.A. E	E.AIE	Analog input fault	199 (HC7)	The inverter output is shut off when a 30 mA or higher current or a 7.5 V or higher voltage is input to terminal 2 while the current input is selected by Pr.73 Analog input selection, or to terminal 4 while the current input is selected by Pr.267 Terminal 4 input selection.
8.056	E.USB	USB communication fault	200 (HC8)	The inverter output is shut off when the communication is cut off for the time set in Pr.548 USB communication check time interval .
E.58F	E.SAF	Safety circuit fault	201 (HC9)	 The inverter output is shut off when a safety circuit fault occurs. The inverter output is shut off if the either of the wire between S1 and PC or S2 and PC becomes non-conductive while using the safety stop function. When the safety stop function is not used, the inverter output is shut off when the shorting wire between terminals S1 and PC or across S2 and PC is disconnected.
E.o S	E.OS	Overspeed occurrence	208 (HD0)	The inverter output is shut off when the motor speed exceeds Pr.374 Overspeed detection level setting under PM sensorless vector control. When Pr.374 = "9999 (initial value)", the inverter output is shut off when the motor speed exceeds the "maximum motor frequency + 10 Hz".
E.P. d	e.pid	PID signal fault*1	230 (HE6)	The inverter output is shut off if the measured value exceeds the PID upper limit or PID lower limit parameter setting, or the absolute deviation value exceeds the PID deviation parameter setting during PID control.
<i>E</i> . S	E.5	CPU fault	245 (HF5)	
ε. ε	E.6		246 (HF6)	The inverter output is shut off if the communication fault of the built-in CPU occurs.
E. 7	E.7		247 (HF7)	
E. 10	E.10	Inverter output fault	250 (HFA)	The inverter output is shut off if the inverter detects an output current fault such as an earth (ground) fault that occurred on the inverter's output side (load side).
8. 73	E.13	Internal circuit fault	253 (HFD)	Appears when the internal circuit is faulty.

• Others

The fault history and the operation status of the inverter are displayed. It is not a fault indication.

Operatio	n panel indication	Name	Description
E	-	Fault history	The operation panel stores the fault indications which appear when a protective function is activated to display the fault record for the past 10 faults.
Ε.	0	No fault history	Appears when no fault records are stored. (Appears when the fault history is cleared after the protective function has been activated.)

This protective function is not available in the initial status. Resetting the inverter initializes the internal cumulative heat value of the electronic thermal relay function. For example, when parameter clear, All parameter clear, Parameter copy, or offline auto tuning is performed in the inverter, or when parameter batch write is performed in FR Configurator2. *1 *2 *3

• Amount of heat generated by the inverter When the heat sink is installed inside the enclosure, the amount of heat generated by the inverter unit is shown in the following table.

Voltaria	Inverter model	Amount of heat generated (W)		
vonage	inverter model	SLD	ND	
	FR-D820-0.1K-008	15	10	
	FR-D820-0.2K-014	24	15	
	FR-D820-0.4K-025	39	23	
Three-phase	FR-D820-0.75K-042	56	38	
200 V	FR-D820-1.5K-070	87	59	
class	FR-D820-2.2K-100	142	78	
	FR-D820-3.7K-165	234	149	
	FR-D820-5.5K-238	277	196	
	FR-D820-7.5K-318	339	262	
	FR-D840-0.4K-012	30	18	
	FR-D840-0.75K-022	45	27	
Three-phase	FR-D840-1.5K-037	61	43	
400 V	FR-D840-2.2K-050	98	59	
class	FR-D840-3.7K-081	155	103	
	FR-D840-5.5K-120	193	135	
	FR-D840-7.5K-163	260	168	
	FR-D820S-0.1K-008	—	11	
	FR-D820S-0.2K-014	—	16	
Single-phase	FR-D820S-0.4K-025	—	28	
class	FR-D820S-0.75K-042	—	45	
	FR-D820S-1.5K-070	—	70	
	FR-D820S-2.2K-100	—	98	
	FR-D810W-0.1K-008	—	11	
Single-phase	FR-D810W-0.2K-014	—	17	
class	FR-D810W-0.4K-025	—	27	
	FR-D810W-0.75K-042	—	43	

NOTE :

The figures indicate the amount of heat generated when the output current is the rated current, power supply voltage is 110 V (100 V class), 220 V (200 V class), or 440 V (400 V class), and the carrier frequency is 1 kHz.

Terminal Connection Diagram

Remove the jumper between P1 and P/+ to connect the DC reactor. (Single-phase 100 V power input model is not compatible with the DC reactor.)

- The function of these terminals can be changed using the Input terminal function selection (Pr.178 to Pr.182). (Refer to the Instruction Manual (Function).) *2 *3 The initial setting varies depending on the specification.
- *4 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input voltage, set the voltage/current input switch to "V". To input current, set the switch to "I". The initial setting varies depending on the specification. (Refer to the Instruction Manual (Function).) It is recommended to use 2 W 1 kQ when the frequency setting signal is changed frequently. Terminal P1 is not available for the single-phase 100 V power input models. A brake transistor is not built in to the FR-D820-0.1K-008, FR-D820-0.2K-014, FR-D820S-0.1K-008, FR-D820S-0.2K-014, FR-D810W-0.1K-008, and FR-D810W-0.2K-
- *5
- *6
- *7 014
- *8 Brake resistor (FR-ABR, MRS, MYS)
- Install a thermal relay to prevent overheating and damage of brake resistors. (A brake resistor cannot be connected to the FR-D820-0.1K-008, FR-D820-0.2K-014, FR-D820S-0.1K-008, FR-D820S-0.2K-014, FR-D810W-0.1K-008, and FR-D810W-0.2K-014.)
- The function of these terminals can be changed using the Pr.192 ABC terminal function selection.
- *10
- The function of these terminals can be changed using the Output terminal function selection (**Pr.190 or Pr.191**). (Refer to the Instruction Manual (Function).) The communication circuit is shared between the PU connector and the RS-485 terminals. The PU connector and the RS-485 terminals cannot be used simultaneously. Use either the connector or the terminals, and do not wire the other. RS-485 communication via the PU connector is enabled initially. *11
- Initially set to FU. Switch between R+ and FU. Both cannot be selected at the same time *12
- Initially set to SD. Switch between R- and SD. Both cannot be selected at the same time. *13

10

Terminal Connection Diagram, Terminal Specifications

Terminal Specifications

Ту	/pe	Termi Syml	nal pol	Common	Terminal Name	Description			
		R/L1, S/L2 T/L3∗1	2,	_	AC power input	Connect these terminals to the commercial	power supply.		
		U, V, W			Inverter output	Connect these terminals to a three-phase	e squirrel cage motor or a PN	1 motor.	
:	rcult	P/+, PR		_	Brake resistor connection	Connect an optional brake resistor (FR-ABR, MRS, or MYS model) across terminals P/+ and PR. (A brake resistor cannot be connected to the FR-D820-0.1K-008, FR-D820-0.2K-014, FR-D820S-0.1K-008, FR-D820S-0.2K-014, FR-D810W-0.1K-008, and FR-D810W-0.2K-014.)			
	ain ci	P/+, N/-		—	Brake unit connection	connect the brake unit (FR-BU2, FR-BU, or BU) or the multifunction regeneration converter (FR-XC in ower regeneration mode) to these terminals.			
-	Š	P/+, P1*2 —		_	DC reactor connection	Remove the jumper across terminals P/+ and P1, and connect a DC reactor. (A DC reactor cannot connected to the single-phase 100 V power input models.) When a DC reactor is not connected, the jumper across terminals P/+ and P1 should not be remove			
		(<u> </u>)		_	Earth (Ground)	or earthing (grounding) the inverter chassis. Must be earthed (grounded).			
		STF*3			Forward rotation start	Turn ON the STF signal to start forward γ rotation and turn it OFF to stop.	When the STF and STR signals are turned ON	Input resistance: 4.7 kΩ,	
	nt	STR*3		SD (sink	Reverse rotation start	Turn ON the STR signal to start reverse s rotation and turn it OFF to stop.	simultaneously, the stop command is given.	21 to 26 VDC,	
	ct inp			(negative common))	Multi-speed selection	Multi-speed can be selected according to and RL signals.	the combination of RH, RM	circuited: 4 to 6 mADC	
	Conta	RH, RM, F	RL*3	(source (positive common))	Pulse train input	Terminal RM is also used as a pulse train input terminal. To use as a pulse train input terminal, change the Pr.291 setting.		Input resistance: 2 kΩ, current when contacts are short-circuited: 8 to 13 mADC. Maximum input pulse: 100k pulses/S	
_		10		5	Frequency setting power supply	Used as the power supply for an external setting) potentiometer.	I frequency setting (speed	5 VDC ± 0.5 V permissible load current 10 mA	
Input signa	etting	2 5		5	Frequency setting (voltage)	Inputting 0 to 5 VDC (or 0 to 10 VDC) provides the maximum output frequency at 5 V (or 10 V) and makes input and output proportional. Use Pr.73 to switch among input 0 to 5 VDC (initial setting), 0 to 10 VDC, and 0 to 20 mA. * The initial setting varies depending on the specification. Set the voltage/current input switch to the "I" position to select current input (0 to 20 mA).		For voltage input, input resistance: 10 ± 1 kΩ.	
	Frequency	4		5	Frequency setting (current)	Inputting 4 to 20 mADC (or 0 to 5 VDC, 0 maximum output frequency at 20 mA and proportional. This input signal is valid only (terminal 2 input is invalid). To use the terminal 4 (current input at initi parameter from Pr.178 to Pr.182 (Input selection) before turning ON the AU sign Use Pr.267 to switch among input 4 to 20 VDC, and 0 to 10 VDC. * The initial setting varies depending on th Set the voltage/current input switch to the voltage input (0 to 5 V / 0 to 10 V).	to 10 VDC) provides the d makes input and output y when the AU signal is ON ial setting), assign "4" to any terminal function ral. 0 mA (initial setting), 0 to 5 he specification. e "V" position to select	20 VDC. For current input, input resistance: 245 ± 5 Ω, maximum permissible current: 30 mA.	
	Relay	A, B, C*4 —		_	Relay output (fault output)	1 changeover contact output that indicates that an inverter's protective function has been activated and the outputs are stopped. Fault: discontinuity across B and C (continuity across A and C), Normal: continuity across B and C (discontinuity across A and C)		Contact capacity: 240 VAC 2 A (power factor = 0.4), 30 VDC 1 A	
a	ector	RUN*4 SE		SE	Inverter running	The output is in LOW state when the inverter output frequency is equal to or higher than the starting frequency (initial value: 0.5 Hz). The output is in HIGH state during stop or DC injection brake operation.*6 Permissi		Permissible load: 24 VDC	
ut sign:	en coll	R+ —		_	Inverter reception terminal	RS-485 communication can be made thro Since the RS-485 communication circuit i connector, the PU connector and this terr	bugh the RS-485 terminals. is shared with the PU minal cannot be used at the	(27 VDC at maximum), 0.1 A (The voltage drop is 3.4 V at maximum while the signal is ON.)	
Outpr	Ö	*4*5	FU	SE	Frequency detection	same time. The PU connector is initially enabled. When using the RS- 485 terminals, if nothing is connected to the PU connector, switch the R+/FU switch and the R-/SD switch to R+ and R- respectively.		-	
	Analog	AM 5 Analog		Analog voltage output	Among several monitor items such as output frequency, select one to output it via this terminal. (The signal is not output during an inverter reset.) The output signal is proportional to the magnitude of the corresponding monitoring item.	Dutput item: Dutput frequency (initial setting)	Output signal: 0 to 10 VDC, permissible load current: 1 mA (load impedance 10 k Ω or more), resolution: 12 bits		
		S1		PC	Safety stop input (Channel 1)	Use terminals S1 and S2 to receive the safe safety relay module. Terminals S1 and S2 c	ety stop signal input from the can be used at a time (dual	Innut resistance: 4.7 kO	
	stop signal	S2		PC	Safety stop input (channel 2)	channel). The Inverter judges the condition of the internal safety circuit from the status (shorted/opened) between terminals S1 and PC, or between S2 and PC. When the status is opened, the inverter output is shut off. In the initial status, terminal S1 and S2 are shorted with terminal PC by shorting wires. Remove the shorting wires and connect the safety relay module when using the safety stop function.		Voltage when contacts are open: 21 to 26 VDC, current when contacts are short- circuited: 4 to 6 mADC	
	Safety	so soc		soc	Safety monitor output (open collector output)	The output status varies depending on the stop signals. The output is in HIGH state during occurre circuit fault. The output is in LOW state oft Instruction Manual (Functional Safety) whe HIGH while both terminals S1 and S2 are representative for the manual.)	e input status of the safety ence of the internal safety nerwise*6. Refer to the en the signal is switched to open. (Contact your sales	Permissible load: 24 VDC (27 VDC at maximum), 0.1 A (The voltage drop is 3.4 V at maximum while the signal is ON.)	

Туре	Terminal Symbol	Common	Terminal Name	Description							
			Contact input common (sink (negative common))	Common terminal for the contact input terminal (sink logic).							
	SD	_	External transistor common (source (positive common))	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the source logic to avoid malfunction by undesirable current.							
			24VDC power supply common	Common terminal for the 24 VDC power supply (terminal PC). Isolated from terminals 5 and SE.							
n terminal			External transistor common (sink (negative common))	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the sink logic to avoid malfunction by undesirable current.	Power supply voltage range:						
nmor	PC	_	Safety stop input terminal common	22 to 26.5 VDC, permissible load current: 100 mA							
Cor			Contact input common (source (positive common))	Common terminal for contact input terminal (source logic).							
		SD	24 VDC power supply	Can be used as a 24 VDC 0.1 A power supply.							
	5 —		Frequency setting common	Common terminal for frequency setting signal (terminal 2 or 4) and terminal AM. Do not earth (ground).							
	SE —		Open collector output common	Common terminal of terminal RUN and FU.							
	SOC		Safety monitor output terminal common	Common terminal for terminal SO.							
	_	_	PU connector	RS-485 communication can be made through the PU connector Conforming standard: EIA-485 (RS-485) Transmission format: Multidrop link Communication speed: 300 to 115200 bps Wiring length: 500 m							
ation	T+ T-		Inverter transmission terminal	RS-485 communication can be made through the RS-485 terminals	Since the RS-485 communication						
UIC.	44 R+/ R+		Inverter reception terminal	circuit is shared with the PU connector, the PU connector and this ter	minal cannot be used at the same						
nu	ຜູ້ FU∗5 FU		_	time. The PU connector is initially enabled. When using the RS-485 to	erminals, if nothing is connected to						
Ē	^I R-/ R-		Inverter reception terminal	R+ and R- respectively.							
ő	SD*7 SD		_								
	_	_	USB Type-C connector*8	USB Type-C connector (receptacle) By connecting the inverter to a personal computer via this connector, FR Configurator2 installed on th computer can be used for setting the inverter, or monitoring or testing the inverter operation. Interface: conforms to USB 2.0 Power supply: 5 V, 100 mA (500 mA maximum)							

Terminal T/L3 is not available for the single-phase power input models.

Terminal P1 is not available for the single-phase 100 V power input models. Terminal functions can be selected using **Pr.178 to Pr.182 (Input terminal function selection)**. Terminal functions can be selected using **Pr.190 to Pr.192 (Output terminal function selection)**.

*1 *2 *3 *4 *5 *6 *7 *8 Terminal functions can be selected using Pr.192 (Output terminal function selection). Terminal R+/FU functions as the open collector output terminal FU in the initial setting. To use the terminal as the RS-485 terminal R+, set the switch to R+. An open collector transistor is ON (conductive) in LOW state. The transistor is OFF (not conductive) in HIGH state. Terminal R-/SD functions as the common terminal SD for contact input terminals in the initial setting. To use the terminal as the RS-485 terminal R-, set the switch to R-. USB bus power connection is available. The maximum SCCR is 500 mA. A PU connector cannot be used during USB bus power connection.

Power of Inverters (Principles and Features)

• What is an inverter?

The power supply (AC) at factories and houses are fixed according to the countries and areas, such as 200 V/60 Hz, 200 V/50 Hz, 100 V/60 Hz and 100 V/50 Hz. With the fixed voltage and frequency obtained from the power supply, the motor can be rotated only at a single speed. However, with an inverter which freely changes the voltage and frequency, the standard motor can be rotated at different speeds.

Thus, inverters are commonly used in various applications, for example to control conveyor speed and fan's air volume, exhibiting their ability to freely change standard motor's speed.

Speed change during commercial power supply operation

Equipment such as transmissions and dampers are used to adjust conveyor speed or fan's air volume.

Inverter operation eliminates the need for a transmission or damper Since the inverter can control frequency output, variable-speed operation is possible. This eliminates the need for a transmission, damper, and other equipment, reducing the size of the system. It also decreases the maintenance time and cost.

Power of Inverters (Principles and Features)

Inverter

Adjust to the desired frequency.

Three-phase motor

Conveyor speed adjustment

Fan air volume adjustment

Advantages of using inverters

Energy saving

Compared to commercial power supply operation, significant energy savings can be gained by decreasing the rotation speed. The consumed power of a square variable-torque load, such as fans, pumps, and blowers, is proportional to the cube of its rotation speed. This means that controlling the rotation speed to adjust the air volume can lead to energy savings.

This enables checking the effect of energy saving (instantaneous value, average value, etc.).

Analog output, RS-485 communication, parameter unit, and so on

Soft start and soft stop

An S-curve pattern is maintained in the frequency change from the present frequency to the target frequency. Therefore, it is possible to reduce shock during acceleration/deceleration and prevent load shifts.

• Support for stable operations

The degree of deterioration can be monitored for the main circuit capacitor, control circuit capacitor, inrush current limit circuit, inverter module, relay contact terminals A, B, and C, and cooling fan.

With inverter self-diagnostics, a warning when parts have reached their service life is output so that parts or inverters can be replaced before faults occur.

Item	Life diagnosis check method	Judgment level	Replacement method
Main circuit capacitor	With the motor connected but not running, DC voltage is applied to the motor at inverter power OFF and the capacitor's capacity is measured.	85% of the initial capacity	
Control circuit capacitor	The life is calculated from the energization time and temperature, and is counted down from 100%.	Estimated remaining life 9%	
Inrush current limit circuit	The number of contact ON times is counted down from 100%.	Estimated remaining life 10% (Power ON: 100,000 times left)	Replaced by our after service team. (Contact your sales representative.)
Inverter module	The degree of deterioration of the inverter module is determined by the change in the surrounding air temperature of the module. (The degree is counted down from 100% (no deterioration).)	Estimated remaining life 15%	
ABC relay contact	The number of contact (relay) ON times is counted down from 100% (0 times).	Estimated remaining life 10%	
Cooling fan	The speed of the cooling fan is constantly monitored and any reduction in speed is detected.	Not more than the specified speed	User replaceable

Using FR Configurator2, easy-to-use software assisting anything from setup to maintenance, much more useful functions are available for users.

Example Connections

Symbol	Name	Overview
(a)	Inverter (FR-D800)	The life of the inverter is influenced by the surrounding air temperature. The surrounding air temperature should be as low as possible within the permissible range. This must be noted especially when the inverter is installed in an enclosure.
		must be kept fully away from the main circuit lines to protect them from noise.
(b)	Three-phase AC power supply	Must be within the permissible power supply specifications of the inverter.
(c)	Molded case circuit breaker (MCCB), earth leakage circuit breaker (ELB), or fuse	Must be selected carefully since an inrush current flows in the inverter at power ON.
(d)	Magnetic contactor (MC)	Install this to ensure safety. Do not use this to start and stop the inverter. Doing so will shorten the life of the inverter.
(e)	AC reactor (FR-HAL)	Install this to suppress harmonics and to improve the power factor. An AC reactor (FR-HAL) (option) is required when installing the inverter near a large power supply system (500 kVA or more). Under such condition, the inverter may be damaged if you do not use a reactor. Select a reactor according to the applied motor capacity. (When using a motor with capacity lower than 0.4 kW, select the reactor for a 0.4 kW motor. For the single-phase 200 V power input models, select the reactor whose capacity is one rank higher than the motor capacity. For the single-phase 100 V power input models, select the reactor whose capacity is three ranks higher than the motor capacity.)
(f)	DC reactor (FR-HEL)	Install this to suppress harmonics and to improve the power factor. Select a reactor according to the applied motor capacity. (When using a motor with capacity lower than 0.4 kW, select the reactor for a 0.4kW motor. For the single-phase 200 V power input models, select the reactor whose capacity is one rank higher than the motor capacity.) When using a DC reactor, remove the jumper across terminals P/+ and P1 before connecting a DC reactor to the inverter.*1
(g)	Noise filter (ferrite core) (FR-BSF01, FR- BLF)	Install this to reduce the electromagnetic noise generated from the inverter.
(h)	Radio noise filter (FR-BIF)	Install this to reduce the radio noise.
(i)	High power factor converter (FR-HC2)	Suppresses the power supply harmonics significantly. Install this as required.
(j)	Multifunction regeneration converter (FR- XC)	Provides a large braking capability. Install this as required.
(k)	Brake unit (FR-BU2)	Allows the inverter to provide the optimal regenerative braking capability
(I)	Resistor unit (FR-BR), discharge resistor (GZG, GRZG)	Install this as required.
(m)	USB connection	Connect between the inverter and a personal computer with a USB Type-C cable.
(n)	Brake resistor (FR-ABR, MRS, MYS)	Increases the braking capability. (0.4K or higher)
(0)	Noise filter (ferrite core) (FR-BSF01, FR- BLF)	Install this to reduce the electromagnetic noise generated from the inverter. The noise filter is effective in the range from about 0.5 to 5 MHz. A wire should be wound four turns at maximum.
(p)	Induction motor	Connect a squirrel-cage induction motor.
(q)	Contactor Example) No-fuse switch (DSN type)	Connect this for an application where a PM motor is driven by the load even while the inverter power is OFF. Do not open or close the contactor while the inverter is running (outputting).
(r)	PM motor	An IPM motor cannot be driven by the commercial power supply.

*1 A DC reactor (FR-HEL) cannot be connected to the single-phase 100 V power input models.

NOTE :

- To prevent an electric shock, always earth (ground) the motor and inverter.
 Do not install a power factor correction capacitor, surge suppressor, or capacitor type filter on the inverter's output side. Doing so will cause the above devices is connected, immediately remove it. When installing inverter shut off or damage the capacitor or surge suppressor. If any of the above devices is connected, immediately remove it. When installing a molded case circuit breaker on the output side of the inverter, contact the manufacturer of the molded case circuit breaker.
- · Electromagnetic wave interference:
- The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. Connect the optional radio noise filter FR-BIF (for use in the input side only), line noise filter FR-BSF01/ FR-BLF, Filterpack, or EMC filter to minimize interference. A Filterpack (FR-BFP2), which contains a DC reactor and a noise filter, is also available.
- For details of options and peripheral devices, refer to the respective Instruction Manual.
- For details or options and peripheral devices, refer to the respective instruction manual.
 A PM motor cannot be driven by the commercial power supply.
 A PM motor is a motor with permanent magnets embedded inside. High voltage is generated at the motor terminals while the motor is running. Before closing the contactor at the output side, make sure that the inverter power is ON and the motor is stopped.

• Option List

By fitting the following options to the inverter, the inverter is provided with more functions.

	Name	Туре	Applications	Remarks			
	LCD operation panel	FR-LU08 (-01)	Graphical operation panel with liquid crystal display				
	Parameter unit	FR-PU07	Interactive parameter unit with LCD display				
	Parameter unit with battery pack	FR-PU07BB (-L)	This parameter unit enables parameter setting without connecting the inverter to power supply.				
	Enclosure surface operation panel	FR-PA07	This operation panel enables inverter operation and monitoring of frequency, etc. from the enclosure surface				
	Parameter unit connection cable	FR-CB20[]	Cable for connection of operation panel or parameter unit [] indicates a cable length. (1m, 3m, 5m)				
	DIN rail attachment	FR-UDA 01, 02	Attachment for installation on DIN rail	3.7K or lower.			
	Intercompatibility attachment	To be supported soon					
	Panel through attachment						
	AC reactor	FR-HAL	For harmonic current reduction and inverter input power factor				
	DC reactor	FR-HEL	improvement				
be	Radio noise filter	FR-BIF(H)	For radio noise reduction (connect to the input side)				
ne ty	Line noise filter	FR-BSF01, FR-BLF	For line noise reduction				
id-alo	Filterpack	FR-BFP2	Combination of power factor improving DC reactor, common mode choke, and capacitive filter	0.4K to 15K of the three- phase power input model.			
Stan	Brake resistor	MRS type, MYS type	For increasing the regenerative braking capability (permissible duty 3%ED)				
	High-duty brake resistor	FR-ABR	For increasing the regenerative braking capability (permissible duty 10%/6%ED)	0.4K or higher			
	Brake unit, Resistor unit, Discharging resistor	FR-BU2, FR-BR, GZG, GRZG type	For increasing the braking capability of the inverter (for high-inertia load or negative load) Brake unit, electrical-discharge resistor and resistor unit are used in combination	-0.4K of higher.			
	Multifunction regeneration converter Dedicated stand-alone reactor Dedicated box-type reactor	FR-XC, FR-XCL/FR-XCG, FR-XCB	One inverter can handle harmonic suppression and power regeneration. Functions that match the application can be selected by combining the inverter/converter with the dedicated reactor FR-XCB (box-type) or FR- XCL/FR-XCG.				
	High power factor converter	FR-HC2	The high power factor converter switches the converter section on/off to reshape an input current waveform into a sine wave, greatly suppressing harmonics. (Used in combination with the standard accessory.)				
	Surge voltage suppression filter	FR-ASF FR-BMF	Filter for suppressing surge voltage on motor	400∨ 400∨: 5.5K or higher			
	Pilot generator	QVAH-10	For tracking operation. 70 V / 35 VAC 500 Hz (at 2500 r/min)	ŭ			
ร	Deviation sensor	YVGC-500WNS	For continuous speed control operation (mechanical deviation detection) Output 90 VAC /90°				
Othe	Calibration resistor	RV24YN 10kΩ	For frequency meter calibration. Carbon film type B characteristic				
	FR Configurator2 (Inverter setup software)	SW1DND-FRC2	Supports an inverter startup to maintenance.				

Stand-alone option

	Name (model)		Specification and structure										
		This parameter unit enables parameter setting without connecting the inverter to power supply.											
		Uses 4 × AA batteries. Can also be powered by an external 100 VAC power supply.											
		 Specifications 											
		ltem	Description										
			AA batteries four (nickel hvdride (NiMH) / alkali)										
		Power supply	When driven by external power supply (100 VAC)										
			AC adaptor *1 When power is applied to the inverter										
			Power is supplied from the PU connector of the inverter.										
			Alkaline batteryNickel metal bydride battery										
			Battery life Approx. 260 min Approx. 340 min										
		Battery life *2	Battery exhaustion warning lamp color										
			From green to orange Approx. 50 min before Approx. 10 min before										
			(at lowering of battery power)										
		Switch	Battery ON/OFF switch										
	Parameter unit with	Display	Modular connector for inverter connection and connector for AC adaptor connection	_									
	FR-PU07BB(-L)	functions	AA alkali battery (for operation check) four *3										
		appliances	Connection cable (FR-CB203) one										
	Elle mana	*1 Use an AC ac	dapter with the following specifications.										
	- 9.90		Rated voltage 5.0 VDC±5% or less										
		Outpu	tiono District 2 A or more										
		specificat	Polarity Plus polarity in the center.										
		*2 The battery lif	ife is a reference value. It differs depending on the battery and the usage										
		*3 Batteries are	not included in FR-PU07BB-L.										
		• Outline dimension (Unit: mm)											
		Southing drawings											
		Soume mawing 18 8.2 46.7											
12													
Ex		This operation ran	\sim	_									
lur		product does not have	ner can be mounted to an enclosure surface to enable inverter operation and monitoring of frequency, etc. (This nave the parameter copy function.)	,									
ple		• Outline dimension (Unit: mm)											
Co		 -											
nn													
ect													
ion	Enclosure surface	*											
, si	operation panel												
Opt	FR-FAU7												
lion		_ <u></u>	59 2-M3 screw										
SI													
		24											
		15											
		This cable is for co	onnection of operation panel or parameter unit										
		 Specifications 											
	Parameter unit	Model	l Length										
	FR-CB20[]	FR-CB2	1 m 1 m 203 3 m										
		FR-CB2	205 5 m										

Name (model)								Speci	fication	an	d st	ructure							
	Improves the power factor and reduces the harmonic current at the input side. Selection method Select a DC reactor according to the applied motor capacity. (Select it according to the motor capacity even if the care 																		
	Select a DC reactor according to the applied motor capacity. (Select it according to the motor capacity even if the capacity																		
	is sm	naller tha	n the i	nverter	capac	ity.) (R	efer to j	bage 9	1)	`			Ũ			. ,			. ,
	 Conr 	nection d	iagram	1		• • •							FR-HE	iL.					
	Connect a DC reactor to the inverter terminals P1																		
	and P. Remove the jumper across terminals P1 and P. If the jumper is left attached, no power factor improvement can be obtained																		
	The connection cable between the reactor and																		
	the inverter should be as short as possible (5 m or																		
	less)			0 00 0	lone do	pooolo	10 (0 11	T	hree-phase		@) R/L1) S/L2			u ⊚— v ⊚—		M)		
	• Outline dimension (Unit: mm)																		
	Contine dimension (Unit: mm) Less than D																		
	Less than D																		
			R)						Ď									
DC reactor		Í		7			1			7									
(for power supply coordination)		H A					н	W			2								
FR-HEL-(H)[]K																			
. Contraction of the second		FR-HE	L-0.4K to	2.2K				FR-H	EL-3.7K to	11K									
111	FR-HEL-H0.4K FR-HEL-H0.75K to H11K																		
				_	_	_	_	_	Massa	Г		lodol	\M/	\A/1	ы	D	D1	d	Mass
		Model	w	W1	н	D	D1	d	(kg)		_		00	75		60		ME	(kg)
0		0.4K	70	60	71	61	—	M4	0.34		ŀ	H0 75K	90 66	75 50	100	70		MA	0.0
		0.75K	85	74	81	61		M4	0.5			H1.5K	66	50	100	80	- 0 54	M4	1
		1.5K	85	74	81	70	_	M4	0.7		> H	H2.2K	76	50	110	80	54	M4	1.3
	0	2.2K	85	74	81	70	-	M4	0.8		6	H3.7K	86	55	128	95	69	M4	2.3
	5	3./K	//	55	92	82	56	M4	1.4		İ	H5.5K	96	60	136	100	75	M5	3
		5.5K	86	55 60	92	92	00 73	N/4	1.7			H7.5K	96	60	136	105	80	M5	3.5
		11K	105	64	138	90 112	78	M6	3.1			H11K	105	75	137	110	85	M5	4.5
			100	01	100	1.12	10	WIG	0.1										
	(a)	The size	of the	cables	used s	hould b	e equa	l to or l	arger tha	an t	hat	of the po	wer su	pply cal	bles (R	/L1, S/I	_2, T/L3	8). (Ref	er to
	(b)	page 84) natoly (03% of	the new	vor fact	or impr	ovina		a ha		tainod (0	1 104 1	whon co	laulato	d with 1		factor	for the
	(0)	fundame	ental wa	ave acc	ording	to the A	Architec	tural S	tandard S	Spe	ecifi	cations (E	Electric	al Instal	lation)	superv	ised by	the Mi	nistry of
		Land, In	frastruc	ture, T	ranspor	t and T	ourism	of Jap	an).	·					,	•			-
	(c)	This is a W1 and	sampl	e outlin cate di	e dimei stances	nsion d	rawing. en insta	The s	hape diffe	ers he	by	the mode	el. Ole size	e is indi	cated ł	h vc			
	(d)	Install D	C react	ors (FF	R-HEL)	on a ho	prizonta	l or ve	tical surf	face	e.		515 512		Jalou I	- j u.			
	(e)	Keep en	ough c	learand	e arou	nd the r	eactor	becaus	e it heat	s u	p.			aach	ا با با م	and 1.4	4	·	fthe
		(rteep a	ciearai on orie	ntation.)	n iu ch	n each	оп тор		υm	and	u minimul	11 5 CM	eacn o	in right	and let	regard	liess o	i uie
		A DC rea	actor ca	annot b	, e conn	ected to	o the sir	ngle-pł	nase 100	V	pow	ver input r	nodels						

Name (model)	Specification and structure														
	Provides a braking capability greater than that is provided by an external brake resistor. This option can also be connected to the inverters without built-in brake transistors. Three types of discharging resistors are available. Make a solution according to the														
	inverters without built-in brake transistors. Three types of discharging resistors are available. Make a selection according to the required braking torque.														
	Speci	ification	•												
	[Brak	e unit]													
				2									400V		
		Model: FR-BU2	2-[]	1.5	К	3.7K	7.5	ĸ	15K	30K	H7	.5K	H15K H	30K	
	Арр	olicable motor c	apacity	The ap	oplical	ble capa	city differs	by the bi	raking torq	ue and the	e opera	ation rate ((%ED).		
	Co	nnected brake r	esistor	GRZG	type,	FR-BR	(For the co	ombinatio	on, refer to	the table I	below.)			
	Mu	Itiple (parallel)	driving	Max. 1	Max. 10 units (However, the torque is limited by the permissible								e connected inv	verter.)	
	A	pproximate mas	is (kg)	0.9		0.9	0.9	0.9	1.	.4	0.9	0.9	9 1.4		
	[Disc	harging resistor	1												
	l i	0 0				20	0V					400V	00V		
	Moc	lel: GRZG type	GZG3	-W00	GRZ	G200-	GRZG300)-5Ω GR	ZG400-2Ω	GRZG	200-	GRZG30	0-5Ω GRZG400	0-2Ω	
		*2	50Ω (1	unit) '	10Ω (3 units)	(4 unit	s) ((6 units)	10Ω (3 i	units)	(4 unit	ts) (6 unit	s)	
		Number of	1 unit	3	3 in se	eries	4 in series	s 6 in	series	6 in serie	es	8 in series	s 12 in serie	es	
	con	nectable units		(1 set)		(1 set)	(1 s	set)	(2 sets)		(2 sets)	(2 sets)		
	resi re	stor combined sistance (Ω)	50	3	30		20	12		60		40	24		
	perr	Continuous operation missible power (W)	100	3	300		600	120	00	600		1200	2400		
	[Resi	stor unit]								1					
Data at		Model: FR-BR-	ii -	200	V	40	0 V								
FR-BU2 Resistor unit	D	ischarging resis	stor	15K 8 4	30K	H15K 32	H30K 16								
FR-BR ischarging resistor	Co	ontinuous opera	tion				1000								
G type, GRZG type	pe	rmissible powe	r (W)	990 1	990	990	1990								
	Ар	proximate mass	s (kg)	15 3	0	15	30								
	*1	The option can be	connecte	ed to the	single	-phase 10	00 V class	nverters.							
	*2	*2 The 1 set contains the number of units in the parentheses. For the 400 V class, 2 sets are required.													
	• Com	Combination between the brake unit and the resistor unit													
Concepts and a first not many data Antonio mang an later for allo Antonio mang and later for allo Antonio mang and Antonio mang antonio mang antonio mang Antonio mang antonio mang antonio mang antonio mang Antonio mang antonio mang antonio mang antonio mang antonio mang Antonio mang antonio mang ant				Dischai					stor mode	el or resis	tor un	unit model			
A second and a sec		Brake unit mo	del				GR	RZG type							
And a second and a					Model *1			N	umber of	connectable			FR-BR		
			EV.	070.00		<u>/</u>		1.00	u:	nits					
		FR-BU2-1	.5K	GZG 3	C 200 100 (3 units		nite)	1 un 3 in		cot)		-			
	2	FR-BU2-3	5K	GRZG		RZG 300-50 (4 unit		4 in	series (1 s	et)		-			
	20	FR-BU2-1	5K	GRZG	ZG 400-2Ω (6 unit		its)		series (1 s	set)		- FR-BR-15K			
		FR-BU2-3	OK	-				-	- 2			FR-BR-30K			
		FR-BU2-H7	7.5K	GRZG	200-	10Ω (3 u	nits)	6 in	sets)	s) -					
	≥ S	FR-BU2-H	15K	GRZG	300-	5Ω (4 un	its)	8 in	in series (2 sets)			FR-BR-H15K		\neg	
	4	FR-BU2-H	30K	GRZG	400-2	2Ω (6 un	its)	12 ir	n series (2	sets)		FR-BR-H	30K		
	*1	The 1 set contains	the num	ber of un	its in t	he parent	heses. For	the 400 \	/ class, 2 s	ets are req	uired.				
	• Selec	ction method													
	The	naximum tempe	erature r	ise of th	e dise	charging	resistors	is about	t 200°C. I	Jse heat-r	esista	int wires to	o perform wirin	id, and	
	make	sure that they	will not	come in	conta	act with	resistors.							J,	
	Do no	ot touch the disc	charging	, resisto	r whil	e the po	wer is Of	l or for a	about 10 n	ninutes af	fter the	e power s	upply turns OF	F.	
	Doing	g so may cause	an elec	tric sho	ck.										
	P	ower						Moto	r capacity	(kW)					
	su	apply Brakir	ıg			1			cupacity						
	vo	ltage torqu	e (0.4 0	0.75		1.5	2.2	3.7	5.5		7.5	11		
		50% 3	0s FR-	BU2-1.5	5K			FR-BU	2-3.7K	FR-BU	2-7.5K	< FF	R-BU2-15K		
	2	100% 3	BOS FR	-BU2-1.5	5K	FR-BU2	2-3.7K	FR-BU	2-7.5K	FR-BU	2-15K	2×	FR-BU2-15K *	1	
	4	50% 3	0s -* 2					FR-BU	2-H7.5K			FF	R-BU2-H15K		
		100%%	30s -*2					FR-BU	2-H7.5K	FR-BU	2-H15	K FF	R-BU2-H30K		
	*1	The number next t	o the mo	del name	indica	ates the r	umber of c	onnectab	le units in p	arallel.					
	*1 *2	The number next t The inverter for 40	o the mo 0V class	del name 1.5K or le	e indica ower o	ates the r cannot be	umber of c used in co	onnectab	le units in p n with a bra	oarallel. ke unit. To	use in	combinatio	on with a brake u	nit, use	

Name (model)			Sp	pecifica	tion a	nd stru	cture									
	One inverter can ha Functions that mate	andle harmonic s ch the application	uppression and po can be selected b	ower reg	jenera ining	ation. the inve	ter/con	verter	with the	e dedica	ated re	actor F	R-XCE	3 (box-		
1	type) or FR-XCL/FI Combination	R-XCG.												·		
	<combination m<="" th=""><th>hatrix of FR-XCL/F</th><th>)>></th><th colspan="10"><<combination and="" fr-mcb="" fr-xc="" matrix="" of="">></combination></th></combination>	hatrix of FR-XCL/F)>>	< <combination and="" fr-mcb="" fr-xc="" matrix="" of="">></combination>												
	reactor		converter			Dedic	ated co	ontacto	or box		regen	eration				
	FR-XCL-[FR-XCG-[] FR-X(-[] FR-XC-[]- *1	PWM			FR-MC	CB-H[]		FF	con]-R-XC	/erter] (-PW	M)			
	7.5K	7.5K	-				1:	50		H75I	K					
	15K	15K	-			< <con< th=""><th>nbinatio</th><th>on mat</th><th>rix of I</th><th>R-XC</th><th>CP and</th><th>d FR-X</th><th>C(-PV</th><th>VM)>></th></con<>	nbinatio	on mat	rix of I	R-XC	CP and	d FR-X	C(-PV	VM)>>		
	22K 30K	22K 30K	18.5K 22K			Con	verter	installa	ation		Multif	Inction	Ì	,		
	37K	37K	37K			attach	ment f	or enc	losure		con	eration verter				
	55K H7.5K	55K H7.5K	55K -			-	FR-X0	CCP[]	-	(H) 7	FR-) 7.5K	(C-[]				
	H11K	H11K	-				0	1		(H) 1	I1K					
	H15K H22K	H15K H22K	- H18.5K				0	2		(H) 1 (H) 2	15K 22K					
	H30K	H30K	H22K H37K				0	3	(H)		30K					
	H55K	H55K	H55K							(H) 2	22K-PV	VM				
	H75K	50°C rat H75K	ing 50°C rating H75K			< <con< th=""><th>nbinatio</th><th>on mat</th><th>rix of F</th><th>R-XC</th><th>CU an</th><th>d FR-X</th><th>C(-PV</th><th>VM)>></th></con<>	nbinatio	on mat	rix of F	R-XC	CU an	d FR-X	C(-PV	VM)>>		
	H90K	40°C rat H75K	ing 40°C rating H75K			IP2 a	0 comp ittachm	oatible ient		rege	eneration					
Multifunction regeneration converter	< <combination< th=""><th>matrix of FR-XC</th><th colspan="3">FR-XCB and FR-XC(-PW</th><th>F</th><th>R-XCC</th><th></th><th>FR-XC</th><th colspan="3">C-[](-PWM)</th><th></th></combination<>	matrix of FR-XC	FR-XCB and FR-XC(-PW			F	R-XCC		FR-XC	C-[](-PWM)						
FR-XC Dedicated stand-alone	reactor	-type Multitu	converter	Ion		01			3 ⁻ H	7K 55K						
reactor FR-XCL/FR-XCG	FR-XCB-[] 18.5K	FR-XC-[22K	[]*2 FR-XC-[]-F	PWM			02		5	55K			_			
Dedicated box-type reactor	22K	30K	22K			*1 TF	03	onic sur	H	37K	ion ie n	re enab	led in t	hie		
FR-XCB	37K 55K	37K 55K	37K 55K			model. Change the setting value of Pr.416 Control method selection to "0" (harmonic suppression disabled)							ethod			
	H18.5K	H22K	H18.5K			*2 The harmonic suppression function is not pre-enabled in this model. Change the setting value of Pr 416 Control method								l in this ethod		
	H37K	H30K H37K	H37K			se	lection	to "1" (harmor	iic suppi	ression	enable	d).			
	H55K H75K	H55K H75K	H55K H75K													
TTO	0															
	 Specifications <200V class> 	>														
		Model *1	Harmonic		Т	F	R-XC-[]K	1	1	F	R-XC-	∐K-P\	мм		
		A	suppression	7.5	11	15	22	30	37	55	18.5	22	37	55		
	Common bus	inverter	Enabled	-	-	-	22 18.5	30 22	37 37	55 55	22 18.5	30 22	37 37	55 55		
	regeneration mode	Overload o	current rating	100%	o conti	nuous /1	50% 60	0 s			100% 60 s	contin	uous /	150%		
	Power	Potential rege (nerative capacity kW)	5.5	7.5	11	18.5	22	30	45	18.5	22	30	45		
	mode *2	Overload o	current rating	100%	o conti	ntinuous /150% 60 s 100% continuous /150% 60 s								150%		
		Rated input AC	; Disabled	Three	-phas	se 200 to	240 V	50 Hz/	60 Hz		Three 50 Hz	-phase /60 Hz	200 to	o 240 V		
		frequency	Enabled	-	-	-	Three 50 Hz	-phase /60 Hz	200 to *3	230 V	Three 50 Hz	-phase /60 Hz	200 to *4	230 V		
	Power source	Permissible AC voltage	Disabled	Three	e-phas	se 70 to :	264 V 5	60 Hz/6	0 Hz	050.1/	Three 50 Hz	-phase /60 Hz	170 to	264 V		
		fluctuation	Enabled	-	-	-	50 Hz	-pnase /60 Hz	17010	255 V	50 Hz	-pnase /60 Hz	170 ແ	J 253 V		
		frequency	Enabled	±5%	-	-	±5%				±5% ±5%					
	Input pov	wer factor	Enabled	-	-	-	0.99 c	or more	(when	load	0.99 c	or more	(wher	n load		
	A	pprox. mass (kg) *5	5	5	6	10.5	10.5	28	38	10.5	10.5	28	38		
Name (model)				Speci	ificati	on an	d stru	cture								
--	---	---	--	--	---------	--	-----------------	--------	---	---	--	--	---	--	---	----------
				opool	mouth	on an	aotra	otaro								
	<<400V class															
		Model*1	Harmonic	FR-XC-H[]K					1	i	FR-XC-H[]K-PWM					
	suppres			7.5	11	15	22	30	37	55	75	18.5	22	37	55	75
	Common	Applicable	Disabled	7.5	11	15	22	30	37	55	75*6	22	30	37	55	75*6
	bus regeneration	capacity (kW)	Enabled	-	-	-	18.5	22	37	55	75*6	18.5	22	37	55	75*6
	mode	Overload cur	rent rating	100%	conti	nuous	/150%	60 s	;	1	r	100%	contin	uous /	150%	60 s
	Power regeneration	Potential regenei (kW	rative capacity	5.5	7.5	11	18.5	22	30	45	75*6	18.5	22	30	45	75*6
	mode *2	Overload cur	rent rating	100% continuous /150% 60 s						100% continuous /150% 60s			60s			
		Rated input AC	Disabled	Three	e-phas	se 380	to 500) V 50) Hz/6	0 Hz		Three-phase 380 to 500 V			V	
		voltage/ frequency	Enabled	-	_	Three-phase 380 to 480 V					Three-phase 380 to 480 V			V		
			Enabled				50 Hz	:/60 H	z *3			50 Hz/	60 Hz	*4	0.550	V
	Power source	Permissible AC	Disabled	Three	e-phas	se 323	to 550) V 50) Hz/6	0 Hz		50 Hz/	60 Hz	5251	5 330	v
		voltage fluctuation	Enabled	-	-	-	Three	-phas	e 323	to 50	6 V	Three-	phase	e 323 t	o 506	V
		Permissible	Disabled	±5%			30 HZ	/00 H	Z			50 HZ/ ±5%	00 HZ			
		frequency	Enabled	-	-	-	±5%					±5%				
	Innut no	wer factor	Enabled		_	-	0.99 0	or mor	e (wh	en loa	d	0.99 o	r more	(wher	n load	ratio is
			Lilableu	-	-	-	ratio i	s 100	%)	20	45	100%)	10 5	00	20	45
	Ar 1 The here	prox. mass (kg) ·	• J	lo Io	0	0	10.5	10.5	20	20	40	10.5	10.5	20	20	40
Dedicated stand-alone reactor FR-XCL/FR-XCG Dedicated box-type reactor FR-XCB	VAC. VAC. The DC bu VAC. Sonnection dia Connection dia Common bu MCCB Power supply Vac. Connection dia Common bu MCCB Power supply Vac. Connection dia Connection br>Se sure to c will damage Con to conr Assign the J Se to use separation Connection dia Connection dia Cont conr Connection dia Connection dia Cont conr Connection dia Connection dia Cont conr Connection dia Cont conr Connection dia Connection di Connection dia Connection d	MC Fuse *9 F Fuse *9 F F Fuse *9 F F Fuse *9 F F F F F F F F F F F F F F F F F F F	594 VDC at an ir ode with harmo R/L1 S/L2 T/L3 T/L3 T/L3 T/L3 T/L3 T/L3 T/L3 T/L3	+4+1 stars term +4+5 +4+5 +4+5 +4+5 +1, S/L s term he con o so wire to d us sec ou re to d us sec ou re to d us set term	uppre	FR 12 12 12 12 12 12 12 12 12 12	VAC, a disab	led>>	Fu Fu Fu Fu Fu Fu Fu Fu Fu Fu Fu Fu Fu F	g so w g so w the fu invert ictor a r. Ope	/ill dam //ill dam //ill dam //ill dam //ill dam //ill dam //ill dam	Inve 1 2 3 *2*3 (MRS)* S *7 independent interve	rter 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	U O V O W O Her and an be o hout co	VDC a Market	at 480

Name (model)	Specification and structure										
	< <dedicated fr-xcl="" reactor="" stand-alone="">></dedicated>										
		200 V class			_						
		Model	w	W1	W2	н	D	D1	Mounting screw size	lerminal	Mass (kg)
		FR-XCL-7.5K FR-XCL-11K	165			125	120	80±2 73±2	-	M5	3.9 3.6
	W2 I Installation hole	FR-XCL-15K	192	55	8	130	130	100±2	М6	MG	5.5
	W1±1.5	FR-XCL-22K	240	70		150	140 160	119±2	-	IVIO	10.0
		FR-XCL-37K FR-XCL-55K	248 250	200	10	190	240 260	120±5 135±5	M8	M10	12.0 15.5
		400 V class				_	_				
		Model	w	W1	W2	н	D	D1	Mounting screw size	Terminal screw size	Mass (kg)
Multifunction	₩+2 5	FR-XCL-H7.5K FR-XCL-H11K	165	55		125	120	73±2 80±2	-	M5	3.7 4.2
regeneration converter FR-XC		FR-XCL-H15K	_		8		135	110±2	M6		6.0
reactor		FR-XCL-H22K	240	70		150	150 170	109±2 129±2	-	M6	9.0 12.0
Dedicated box-type		FR-XCL-H37K FR-XCL-H55K	220 250	200	10	190	230	120±5 135±5	M8	M8	12.0 16.0
reactor		FR-XCL-H75K	300	270	10	335	200	140±2	M8	M8	50.0
		FR-XCL-H90K	300	270	10	360	210	150±2	M8	M8	60.0
	<>Dedicated stand-alone reactor FR-XCG>>	200 V class									
		Model	w	W1 \	W2	н	D	D1	Mounting screw size	Terminal screw size	Mass (kg)
		FR-XCG-7.5K FR-XCG-11K	220 2	20 200 6	0 6 1	85 <mark>1</mark>	15 6 20 7	0±1.5 75±1.5	M5	M5	5 8
	W1±15 Installation hole	FR-XCG-15K		200 0	1	90 1	30 9	0±1.5			11
	Rating D max	FR-XCG-22K	255	225 8	3 2	40 1	40 8	5±1.5	M6	M6	16 20
		FR-XCG-37K	300 2	270 1	0 2	285	80	00±1.5	M8	M10	25
		400 V class					90 1	30±1.5			40
		Model	w	W1 \	W2	н	D	D1	Mounting screw size	Terminal screw size	Mass (kg)
		FR-XCG-H7.5K	220	200 6	s 1	1 85 1	15 6 20 7	0±1.5	M5	M5	5 8
		FR-XCG-H15K	20 2	200 0	, I	1	20 / 30 ⁹	0±1.5	NIO		11
		FR-XCG-H22K FR-XCG-H30K	255	225 8	3 2	240 1	40 8	5±1.5	M6	M6	16 20
		FR-XCG-H37K	300 2	270 1	0 2	285 1	80 00 1	00±1.5	M8	M8	25
		FR-XCG-H75K	300	270 1	0 3	35 2	00 1	40±2	M8	M8	50
		FR-XCG-H90K	300	270 1	0 3	60 2	10 1	50±2	M8	M8	60
											<u></u>

Substantially suppresses power harmonics to obtain the equivalent capacity conversion coefficient K5 = 0 specified in Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage" in Japan. The power regeneration function comes standard. The common converter driving with several inverters is possible. Selection method Select the model according to capacity of the inverter or the applicable motor, whichever larger. Specifications Model: 200 V And the function of the inverter or the applicable motor, whichever larger. Specifications Model: 200 V And the function of the inverter or the applicable motor, whichever larger. Specifications Model: 200 V And the inverter of the inverter or the applicable motor, whichever larger. Specifications Model: 200 V And the inverter of the inverter or the applicable motor, whichever larger. Specifications Model: 200 V And the inverter of the inverter or the applicable motor, whichever larger. Commeter of the inverter of the inverter or the applicable motor, which we have have have have have have have hav	he Harmonic
Model: $200 V$ $400 V$ $*2$ $7.5K$ $15K$ $30K$ $55K$ $75K$ $H7.5$ $H15K$ $H30K$ $H55K$ $H75K$ $H110$ $H160$ $H220$ $H280$ $H280$ Applicable inverter capacity (ND rating) *1 $3.7K$ to $7.5K$ $7.5K$ $15K$ $30K$ $37K$ to	
High power factor converter FR-HC2High power factor converter FR-HC2High power factor converter FR-HC2High power factor converter converterHigh power factor converter converterHigh power factor converter converterHigh power factor converterHigh power factor converterHigh power factor converterHigh power factor con- verterReactor 1Reactor 1Reactor 1Reactor 1Reactor 1Reactor 1Reactor 1Reactor 1Reactor 2Outside box verter	
Applicable inverter capacity (ND rating) *1 3.7K to 7.5K 7.5K to 15K 15K to 30K 37K to 55K 3.7K to 7.5K 7.5K to 15K 15K to 15K 30K to 15K 37K to 7.5K 55K to 10K 90K to 160K 110K to 220K 160K 20K 2 to 280K 44 Rated input voltage/ frequency Three-phase 200 V to 220 V 50 Hz Three-phase 380 V to 460 V 50/60 Hz Three-phase 380 V to 460 V 50/60 Hz Rated input current (A) 33 61 115 215 278 17 31 57 110 139 203 290 397 506 7 *1 The total capacity of the connected inverters. FR-HC2 It a high power factor converter (FR-HC2) is purchased, it comes with reactor 1 (FR-HCL21), reactor 2 (FR-HCL22), and (FR-HCB2). Do not connect the DC reactor to the inverter when using a high power factor converter. (If an H280K or higher is purchased, it comes with FR-HCL21, FR-HCL22, FR-HCC2, FR-HCR2, and FR-HCM2.) • Outline dimension (Unit: mm) High power factor converter verter Reactor 1 Reactor 2 Outside box	400 H560 K K
High power factor converter FR-HC2 Frequency 1 high power factor converter (FR-HCL21, FR-HCL22, FR-HCC2, FR-HCR2, and FR-HCM2.) High power factor converter fR-HC2 High power factor converter (FR-HCL21, FR-HCL22, FR-HCC2, FR-HCR2, and FR-HCM2.)	0K 280K to 0K 560K
High power factor converter FR-HC2 High power factor converter FR-HC2 High power factor converter (FR-HC2) is purchased, it comes with reactor 1 (FR-HCL21), reactor 2 (FR-HCL22), and (FR-HCB2). Do not connect the DC reactor to the inverter when using a high power factor converter. (If an H280K or higher is purchased, it comes with FR-HCL21, FR-HCL22, FR-HCC2, FR-HCR2, and FR-HCM2.) • Outline dimension (Unit: mm)	
High power factor converter FR-HC2 High power factor converter FR-HC121 *1 FR-HC122 *1 FR-HC122 *1 FR-HC122 *1 FR-HC122 *1	6 993
High power factor con- verter EP-HCL 21 *1 EP-HCL 22 *1 EP-HCL 22 *1 EP-HCL 22 *1	an outside box
Capacity FR-HC2	
7.5K 220 260 170 132 150 100 237.5 230 140 400 200 405	
\sim 15K 250 400 190 162 172 126 257.5 260 165 190 320 165	
30K 325 550 195 195 210 150 342.5 305 180 270 450 203	
№ 55K 370 620 250 210 180 200.5 432.5 380 280 ²¹⁰ ⁴³⁰ ²⁰³	
75K 465 620 300 240 215 215.5 474 460 280 400 450 250	
H7.5K 220 300 190 132 140 100 237.5 220 140	
H15K 220 300 190 162 170 126 257.5 260 165 190 320 165	
H30K 325 550 195 182 195 101 342.5 300 180	
H55K 370 670 250 282.5 245 165 392.5 365 200 270 450 203	
► H75K 325 620 250 210 175 210.5 430 395 280 300 350 250	
H110K 465 620 300 240 230 220 500 440 370 350 450 380	
HIBUK 498 1010 380 280 295 274.5 560 520 430 400 450 440	
HIZEVIN 498 1010 380 330 335 289.5 020 020 480	
HZ80K 080 1010 380 330 335 332 090 700 500	
1300 190 1330 440 432 343 643 632 120 143	l
High power factor converter High power facto	

Example Connections, Options

Mitsubishi Electric Molded Case Circuit Breakers and Earth Leakage Circuit Breakers WS-V Series

Our main series of products in the industry's smallest class with high breaking capability enabled by a new breaking technology.

The new WS-V series breaker has enhanced usability by further standardizing internal parts, meets international standards, and addresses environmental and energy-saving issues.

Features

A 54-mm-wide body, which belongs to the smallest class in the industry

The compact body allows for downsizing of the equipment and enclosure.

The breakers have been downsized to 54 mm wide and 52 mm depth (decreased by 16 mm compared with S-class general-purpose products).

· Conforms to various global standards

- New JIS standard: JIS C 8201-2-1 (NF) Annex 1 and Annex 2
- Electrical Appliances and Materials Safety Act (PSE)
- IEC standard: IEC 60947-2
- EN (Europe): EN 60947-2, CE marking (TÜV certification, self declaration) GB standard (China): GB/T 14048.2 CCC certification
- Safety certification (Korea): KC marking

Three-phase power supply supported by CE/CCC marked earth leakage circuit breakers

GB/T 14048.2-2008 was established in China, requiring the earth leakage circuit breaker to fulfill its function even if a phase is lost as is the case with the EN standard in Europe. CE/CCC marked earth leakage circuit breakers of the WS-V series support three phase power supply. Compliance with the revised standard is certified

Lineup of UL 489 listed circuit breakers with 54 mm width "Small Fit" [F) style

The compact breakers contribute to a size reduction of machines, and IEC 35 mm rail mounting is standard.

13

For security and standard compliance of machines, F-type and Vtype operating handles are available for breakers with 54 mm width.

Lineup of UL 489 listed circuit breakers for 480 V AC "High Performance" The breaking capacity has been improved to satisfy the request for SCCR upgrading.

Breaking capacity of UL 489 listed circuit	breakers for 480 V
AC (UL 489) (Example of 240 V AC)	

NF125-SVU/NV125-SVU	50 kA
NF125-HVU/NV125-HVU	100 kA
NF250-CVU/NV250-CVU	35 kA
NF250-SVU/NV250-SVU	65 kA
NF250-HVU/NV250-HVU	100 kA

Mitsubishi Electric Magnetic Motor Starters and Magnetic Contactors MS-T Series

Mitsubishi Electric magnetic motor starters have been newly designed and the MS-T series has been released.

The MS-T series is smaller than ever, enabling more compact control panel. The MS-T series is suitable for other Mitsubishi Electric FA equipment. In addition, the MS-T conforms to a variety of global standards, supporting the global use.

Features

Compact

General-purpose magnetic contactor with smallest width*1 in the industry.

The width of MS-T series is reduced by 32% as compared to the prior MS-N series, enabling a more compact panel. For selection, refer to page 84.

Based on Mitsubishi Electric research as of November 2020 in the general-purpose magnetic contactor industry for 10 A-frame class. *1

[Unit: mm] 43 None Ħ MS-N series 面 <u> 3 3 3</u> S-N10 S-N11 (Auxiliary 1-pole) S-N12 (Auxiliary 2-pole 44 43 36 **B** ê ∩e New New MS-T series 폢 S-T10 S-T12 (Auxiliary 2-pole) S-T20 S-T25 88 75 88 88 100 100 000 lioit 000)øi) O (MS-N series Ŭ Ċ Ь M **X** S-N65 S-N50AF S-N65AF S-N80 S-N95 100 000 000 dioid New M MS-T series S-T50 S-T65 S-T80 S-T100 S-T35

Standardization

Terminal covers are provided as standard to ensure safety inside the enclosure. Users do not have to make arrangements to specify and obtain options separately. Covers are provided also for the auxiliary contact unit. Users can reduce their inventory.

• Widened range of operation coil ratings (AC operated model) The widened range reduces the number of operation coil rating types from 13 (MS-N series) to 7.

The reduced number of the operation coil types enables more simplified customers' ordering process and the faster delivery. Customers can select the operation coil more easily.

(Conventional product) 48 to 48 to 50 100 100 to 110 115 to 120 220 230 to 240 260 to 280 380

*Seven types are available without change for the 50 A frame model or higher.

Global Standard

Conforms to various global standards

Our magnetic contactors are certified as compliant not only with major international standards such as IEC, JIS, UL, CE, and CCC but also with ship classification standards and country specific standards.

This will help our customers expand their business overseas.

		Safety standard						
	International	Japan	Europe		Europe China			
Standard			EN	Certification	GR			
	150		EC Directive	body	66			
	IEG*2	JIS	CE	\underline{A}	\mathbf{w}	c (VL) us		

*2 Compliant with the requirements for mirror contacts in standards such as IEC 60947-4-1, and TÜV-certified.

Spring clamp terminal:

Easy-to-connect terminal that ensures connection with the contact pressure of the spring just by pushing wire into the conductive terminal. Solid wires and ferrules can be connected simply by inserting them into the terminals

Stranded wires can be connected by opening the spring with a tool, inserting wire, and removing the tool.

Features

Key features of the screwless terminals:

- Significant reduction in the time required for wiring
- Comparison with the terminal screw model (with round crimp terminal) Wiring with ferrules: 22% reduction
- Wiring with solid or stranded wire: 52% reduction
- Reduction in the time required for wiring
 - Wiring performed by non-experts (with 2-year experience) (The research conducted by Japan Switchboard & control system Industries Association)
- Easy wiring for whoever works on Push-in connection eliminates the need for the screw-tightening skills.
- Enhanced maintenance efficiency
- Screw retightening is not necessary for installation and maintenance of enclosures and machines.
- Reliable wire connection
 - There is no risk of terminal screw loosening due to vibration or shocks, or long-term service.

Motor Circuit Breaker MMP-T Series

Motor circuit protection (against overload / phase loss / short-circuit) is achievable the MMP-T series alone. The wire-saving, space-saving design enables downsizing of the enclosure. The MMP-T series can be used in combination with the MS-T series.

Features

• What is the motor circuit breaker?

The motor circuit breaker, applicable to the motor circuit, has the functions of a circuit breaker and a thermal overload relay in one unit. The motor circuit breaker provides protection against overload, phase loss, and short circuit.

M M

Using a connection conductor unit (option) for connecting a motor circuit breaker and a contactor reduces work hours required for wirina.

A connection conductor unit for the high sensitivity contactor (SD-Q) is also available. (Model: UT-MQ12)

S-T12SQ

termina

Selecting the rated sensitivity current for the earth leakage circuit breaker

When using an earth leakage circuit breaker with the inverter circuit, select its rated sensitivity current as follows, independently of the PWM carrier frequency.

- Breaker designed for harmonic and surge suppression Rated sensitivity current
- $I\Delta n \ge 10 \times (Ig1 + Ign + Igi + Ig2 + Igm)$ Standard breaker
- Rated sensitivity current
- $I\Delta n \ge 10 \times \{Ig1+Ign+Igi+3 \times (Ig2+Igm)\}$
- Ig1, Ig2: Leakage currents in wire path during commercial power supply operation
- Ign: Leakage current of inverter input side noise filter
- Igm: Leakage current of motor during commercial power supply operation
- Igi: Leakage current of inverter unit

Example of leakage current of cable path per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit (200 V 60 Hz)

Leakage current example of three-phase induction motor during the commercial power supply operation (200 V 60 Hz)

Leakage current example of three-

commercial power supply operation (Totally-enclosed fan-cooled

> 3.77.515223755 2 5.5 1118.53045 Motor capacity (kW)

phase induction motor during the

type motor 400 V 60 Hz)

2. (

0. 0.

0.3

C

(mA)

currents

leakage 0.

Example of leakage current per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit

For ", connection, the amount of leakage current is appox. 1/3 of the above value.

<Example>

- Install the earth leakage circuit breaker (ELB) on the input side of the (a) inverter.
- In the $\,\,
 ightarrow\,\,$ connection earthed-neutral system, the sensitivity current is blunt (b) against a ground fault in the inverter output side. Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 61140 class 1 and other applicable standards)

Selection example (in the case of the above figure)

	Breaker designed for harmonic and surge suppression	Standard breaker					
Leakage current lg1 (mA)	33× <u>5 m</u> =0.17						
Leakage current Ign (mA)	0 (without	noise filter)					
Leakage current Igi (mA)	1						
Leakage current lg2 (mA)	33×- <u>50 m</u> =1.65						
Motor leakage current Igm (mA)	0.18						
Total leakage current (mA)	3.00	6.66					
Rated sensitivity current (mA) (≥lg × 10)	30	100					

			Molded case circui	t breaker (MCCB) *2	Input side	magnetic	Recommended cable gauge (mm ²) *4			
age	Motor	Applicable inverter	(ELB) (NF, NV type)		conta	ctor *3	R/L1, S/	L2, T/L3		
olt 1		(ND rating)	Power factor improving (AC or DC)		Power factor	improving (AC	Power factor i	improving (AC	U, V, W	
-	(KVV) *1	(ND rating)	reactor connection		or DC) reacte	or connection	or DC) reacto			
			Without	With	Without	With	Without	With		
	0.1	FR-D820-0.1K-008	5A	5A	S-T10	S-T10	2	2	2	
>	0.2	FR-D820-0.2K-014	5A	5A	S-T10	S-T10	2	2	2	
500	0.4	FR-D820-0.4K-025	5A	5A	S-T10	S-T10	2	2	2	
ė	0.75	FR-D820-0.75K-042	10A	5A	S-T10	S-T10	2	2	2	
has	1.5	FR-D820-1.5K-070	15A	10A	S-T10	S-T10	2	2	2	
e-p	2.2	FR-D820-2.2K-100	20A	15A	S-T10	S-T10	2	2	2	
Jre	3.7	FR-D820-3.7K-165	30A	30A	S-T21	S-T10	3.5	3.5	3.5	
F	5.5	FR-D820-5.5K-238	50A	40A	S-T35	S-T21	5.5	5.5	5.5	
	7.5	FR-D820-7.5K-318	60A	50A	S-T35	S-T35	14	8	8	
۷	0.4	FR-D840-0.4K-012	5A	5A	S-T10	S-T10	2	2	2	
00	0.75	FR-D840-0.75K-022	5A	5A	S-T10	S-T10	2	2	2	
e 4	1.5	FR-D840-1.5K-037	10A	10A	S-T10	S-T10	2	2	2	
has	2.2	FR-D840-2.2K-050	15A	10A	S-T10	S-T10	2	2	2	
e-p	3.7	FR-D840-3.7K-081	20A	15A	S-T10	S-T10	2	2	2	
Jre	5.5	FR-D840-5.5K-120	30A	20A	S-T21	S-T12	3.5	2	2	
F	7.5	FR-D840-7.5K-163	30A	30A	S-T21	S-T21	3.5	3.5	3.5	
2	0.1	FR-D820S-0.1K-008	5A	5A	S-T10	S-T10	2	2	2	
20(0.2	FR-D820S-0.2K-014	5A	5A	S-T10	S-T10	2	2	2	
Ise	0.4	FR-D820S-0.4K-025	10A	10A	S-T10	S-T10	2	2	2	
oha	0.75	FR-D820S-0.75K-042	15A	10A	S-T10	S-T10	2	2	2	
<u>-</u>	1.5	FR-D820S-1.5K-070	20A	20A	S-T10	S-T10	2	2	2	
Sing	2.2	FR-D820S-2.2K-100	40A	30A	S-T21	S-T10	3.5	3.5	2	
۷	0.1	FR-D810W-0.1K-008	10A	5A	S-T10	S-T10	2	2	2	
100	0.2	FR-D810W-0.2K-014	10A	10A	S-T10	S-T10	2	2	2	
se	0.4	FR-D810W-0.4K-025	15A	15A	S-T10	S-T10	2	2	2	
Single-pha	0.75	FR-D810W-0.75K-042	30A	20A	S-T10	S-T10	3.5	3.5	2	

Molded case circuit breaker, magnetic contactor, cable gauge

Assumes the use of a standard 4-pole motor. *1

*2 Select an MCCB according to the power supply capacity. Install one MCCB per inverter.

(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the document enclosed with the product and select appropriate fuses.)

The magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stops during motor driving, the electrical durability is 25 times.

If using an MC for emergency stop during motor driving or using it on the motor side during commercial power supply operation, select an MC with the class AC-3 rated current for the rated motor current.

Cables *4

*3

HIV cable (600 V grade heat-resistant PVC insulated wire) with a continuous maximum permissible temperature of 75°C. It assumes a surrounding air temperature of 50°C or lower and the wiring distance of 20 m or shorter.

NOTE 🤅

- When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model, and select cables and reactors according to the motor output.
- When the breaker on the inverter's input side trips, check for wiring faults (such as short circuits) and, damage to internal parts of the inverter . etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.

Precautions for use

▲ Safety instructions

- To use the product safely and correctly, make sure to read the "Instruction Manual" before the use.
- This product has not been designed or manufactured for use with any equipment or system operated under life-threatening conditions
- Please contact our sales representative when considering using this product in special applications such as passenger mobile, medical, aerospace, nuclear, power or undersea relay equipment or system.
- Although this product was manufactured under conditions of strict quality control, install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product or other failures are likely to cause a serious accident.
- Do not use the inverter for a load other than the three-phase induction motor and the PM motor.
- Do not connect a PM motor in the induction motor control settings (initial settings). Do not use an induction motor in the PM sensorless vector control settings. It will cause a failure.
- When using a PM motor, the precautions for using a PM motor must be observed as well.

Operation

- When a magnetic contactor (MC) is installed on the input side, do not use the MC for frequent starting/stopping. Otherwise the inverter may be damaged.
- When a fault occurs in the inverter, the protective function is activated to stop the inverter output. However, the motor cannot be immediately stopped. For machinery and equipment that require an immediate stop, provide a mechanical stop/holding mechanism.
- Even after turning OFF the inverter, it takes time to discharge the capacitor. Before performing an inspection, wait 10 minutes or longer after the power supply turns OFF, then check the voltage using a tester, etc.
- To maintain the security (confidentiality, integrity, and availability) of the inverter and the system against unauthorized access, DoS*1 attacks, computer viruses, and other cyberattacks from external devices via network, take appropriate measures such as firewalls, virtual private networks (VPNs), and antivirus solutions. We shall have no responsibility or liability for any problems involving inverter trouble and system trouble by DoS attacks, unauthorized access, computer viruses, and other cyberattacks. (Refer to the FA System Security Guideline -Separate Volume [FREQROL]-.)
- *1 DoS: A denial-of-service (DoS) attack disrupts services by overloading systems or exploiting vulnerabilities, resulting in a denial-of-service (DoS) state.

♦ Wiring

- Applying the power to the inverter output terminals (U, V, W) causes a damage to the inverter. Before power-on, thoroughly check the wiring and sequence to prevent incorrect wiring, etc.
 Terminals P/+, P1, N/-, and PR are for connection to dedicated
- Terminals P/+, P1, N/-, and PR are for connection to dedicated options and DC power supplies. Do not connect anything other than a dedicated option and DC power supply. Do not shortcircuit between the frequency setting power supply terminal 10 and the common terminal 5, and between terminals PC and SD.
- To remove the wire connected to the control circuit terminal, pull the wire while pressing down the open/close button firmly with a flathead screwdriver. Otherwise, the terminal block may be damaged.
- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, separate the main circuit cables at the input side from the main circuit cables at the output side.
- After wiring, wire offcuts must not be left in the inverter. Wire
 offcuts can cause an alarm, failure or malfunction. Always keep
 the inverter clean. When drilling mounting holes in an enclosure
 etc., take caution not to allow chips and other foreign matter to
 enter the inverter.
- Set the voltage/current input switch correctly. Incorrect setting may cause a fault, failure or malfunction.
- The output of the single-phase power input model is three-phase 200 V.

Power supply

When the inverter is connected near a largecapacity power transformer (500 kVA or more) or when a power factor correction capacitor is to be switched over, an excessive peak current may flow in the power input circuit, damaging the inverter. To prevent this, always install an optional AC reactor (FR-HAL).

For the single-phase 200 V power input models, select the reactor whose capacity is one rank higher than the motor capacity.

When connecting a single-phase 100 V power input model to power transformer (exceeding 50 kVA), install an AC reactor (FR-HAL) so that the performance is more reliable.

 If surge voltage occurs in the power supply system, this surge energy may flow into an inverter, and the inverter may display the overvoltage protection (E. OV[]) and trip. To prevent this, install an optional AC reactor (FR-HAL).

Installation

- Install the inverter in a clean place with no floating oil mist, cotton fly, dust and dirt, etc. Alternatively, install the inverter inside the "sealed type" enclosure that prevents entry of suspended substances. For installation in the enclosure, decide the cooling method and the enclosure size to keep the surrounding air temperature of the inverter within the permissible range (for specifications, refer to page 38).
- Some parts of the inverter become extremely hot. Do not install the inverter to inflammable materials (wood etc.).
- Attach the inverter vertically.

Setting

- Depending on the parameter setting, high-speed operation (up to 590 Hz) is available. Incorrect setting will lead to a dangerous situation. Set the upper limit by using the upper frequency limit setting.
- Setting the DC injection brake operation voltage and operating time larger than their initial values causes motor overheating (electronic thermal O/L relay trip).
- Do not set Pr. 70 Special regenerative brake duty except for using the optional brake resistor. This function is used to protect the brake resistor from overheating. Do not set the value exceeding permissible duty of the brake resistor.

• Precautions for use of PM motor

When using the PM motor, the following precautions must be observed as well.

A Safety instructions

 Do not use a PM motor for an application where the motor is driven by the load.

Combination of motor and inverter

- For the motor capacity, the rated motor current should be equal to or less than the rated inverter current.
 If a motor with substantially low rated current compared with the inverter current doubt the substantially low rated current compared with the
- inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about 40% or higher of the inverter rated current. Only one PM motor can be connected to an inverter.
- A PM motor cannot be driven by the commercial power supply.

Installation

 While power is ON or for some time after power-OFF, do not touch the motor since the motor may be extremely hot. Doing so may cause burns.

Wiring

- Connecting a commercial power supply to the input terminals (U, V, W) of a motor will burn it out. The motor must be connected with the output terminals (U, V, W) of the inverter.
- A PM motor is a motor with permanent magnets embedded inside. High voltage is generated at the motor terminals while the motor is running. Before wiring or inspection, confirm that the motor is stopped.

In an application, such a as fan or blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise an electric shock may be caused. The inverter power must be turned ON before closing the contacts of the contactor at the output side.

- Match the input terminals (U, V, W) of the motor and the output terminals (U, V, W) of the inverter when connecting.
- Use the wiring length of 30 m or shorter when connecting a PM motor.

Operation

- About 0.1 s (magnetic pole detection time) takes to start a motor after inputting a start signal.
- A PM motor is a motor with embedded permanent magnets. Regression voltage is generated when the motor coasts at an instantaneous power failure or other incidents.

The inverter's DC bus voltage increases if the motor coasts fast in this condition. When using the automatic restart after instantaneous power failure function, it is recommended to also use the regeneration avoidance operation to make startups stable.

Thus, the relation between the rotation speed and the frequency setting is:

Rotation speed = 120 × frequency setting value / number of motor poles

Connection with machine

Direct connection

• When installing, align the motor shaft center and the machine shaft. Insert a liner underneath the motor or the machine legs as required to make a perfect alignment.

- *1 Set so that the A dimensions become the same dimension even when any position is measured by feeler gauge (inequality in A width 3/100 mm or lower).
- *2 Do not set parts with a vertical gap like B (maximum runoff degree: 3/100 mm).

• NOTE

• When a fan or blower is directly connected to the motor shaft or to the machine, the machine side may become unbalanced. When the unbalanced degree becomes larger, the motor vibration becomes larger and may result in a damage of the bearing or other area. The balance quality with the machine should meet the class G2.5 or lower of JIS B0905 (the Balance Quality Requirements of Rigid Rotors).

Connected by belt

- When installing, place the motor shaft and the machine shaft in parallel, and mount them to a position where their pulley centers are aligned. Their pulley centers should also have a right angle to each shaft.
- An excessively stretched belt may damage the bearing and break the shafts. A loose belt may slip off and easily deteriorate. A flat belt should be rotated lightly when it is pulled by one hand. For details, refer to the Instruction Manual of the motor.

Connected by gear couplings

Place the motor and machine shafts in parallel, and engage the gear teeth properly.

Permissible vibration during operation

During operation, the motor coupled to a load machine may vibrate according to the degree of coupling between the motor and the load, and the degree of vibration created by the load. The degree of the motor's vibration varies depending on the condition of the foundations and baseplate of the motor. If the motor has higher vibration than the permissible level, investigate the cause, take measure, and take action.

For further details on vibration, refer to the Instruction Manual of the motor.

Selection precautions

Inverter capacity selection

- When operating a special motor or multiple motors in parallel by one inverter, select the inverter capacity so that 1.05 times of the total of the rated motor current becomes less than the rated output current of the inverter.
- (Multiple PM motors cannot be connected to an inverter.)
 Do not set **Pr. 70 Special regenerative brake duty** except for using the optional brake resistor. This function is used to protect the brake resistor from overheating. Do not set the value exceeding permissible duty of the brake resistor.

Starting torque of the motor

 The starting and acceleration characteristics of the motor driven by an inverter are restricted by the overload current rating of the inverter. In general, the torque characteristic has small value compared to when the motor is started by a commercial power supply. When a large starting torque is required, and torque boost adjustment and Advanced magnetic flux vector control cannot generate the sufficient torque, increase both the motor and inverter capacities.

Acceleration/deceleration time

- The motor acceleration/deceleration time is decided by the torque generated by the motor, load torque, and moment of inertia (J) of load.
- The required time may increase when the torque limit function or stall prevention function operates during acceleration/ deceleration. In such a case, set the acceleration/deceleration time longer.
- When shorter acceleration/deceleration time is required, increase the torque boost value (setting too large value may cause activation of the stall prevention function, resulting in longer acceleration time), apply Advanced magnetic flux vector control, or increase the motor and inverter capacities. To decrease the deceleration time, it is necessary to add optional brake resistor MRS type, MYS type, or FR-ABR (for the 0.4K or higher), the brake unit (FR-BU2), multifunction regeneration converter (FR-XC), or a similar device to absorb braking energy.

Power transfer mechanisms (reduction gear, belt, chain, etc.)

 Caution is required for the low-speed continuous operation of the motor with an oil lubricated gear box, transmission, reduction gear, etc. in the power transfer mechanism. Such an operation may degrade the oil lubrication and cause seizing. On the other hand, the high-speed operation at more than 60 Hz may cause problems with the noise of the power transfer mechanism, life, or insufficient strength due to centrifugal force, etc. Fully take necessary precautions.

Instructions for overload operation

When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure. Adding a margin to the current can eliminate such a condition. For an induction motor, use an inverter of a higher capacity (up to two ranks for the ND rating). For a PM motor, use an inverter and PM motor of higher capacities.

• Precautions on peripheral device selection

Selection and installation of molded case circuit breaker

Install a molded case circuit breaker (MCCB) on the power receiving side to protect the wiring at the inverter input side. Select an MCCB according to the inverter power supply side power factor, which depends on the power supply voltage, output frequency and load. Refer to **page 84**. Especially for a completely electromagnetic MCCB, a slightly large capacity must be selected since its operation characteristic varies with harmonic currents. (Check the reference material of the applicable breaker.) As an earth leakage circuit breaker, use the Mitsubishi Electric earth leakage circuit breaker designed for harmonics and surge suppression. (Refer to **page 83**.)

When installing a molded case circuit breaker on the inverter output side, contact the manufacturer of each product for selection.

Handling of the input side magnetic contactor (MC)

- For the operation using external terminals (using terminal STF or STR), install the input-side magnetic contactor to prevent accidents due to automatic restart when the power is restored after power failures such as an instantaneous power failure, or for safety during maintenance works. Do not use this magnetic contactor for frequent starting/stopping of the inverter. (The switching life of the converter part is about 1 million times.) In the operation by operation panel, the automatic restart after power restoration is not performed and the magnetic contactor cannot be used to start the motor. The input-side magnetic contactor can stop the motor. However, the regenerative brake of the inverter does not operate, and the motor coasts to a stop.
- Installation of a magnetic contactor at the input side is recommended. A magnetic contactor avoids overheat or burnout of a brake resistor when heat capacity of the resistor is insufficient or a brake regenerative transistor is damaged with short while connecting an optional brake resistor. In this case, shut-off the magnetic contactor when fault occurs and inverter trips.

Handling of the output side magnetic contactor (MC)

- Switch the MC between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, switch it ON/ OFF after the inverter and motor have stopped.
- Do not install a magnetic contactor at the inverter's output side when using a PM motor.

Installation of thermal relay

In order to protect the motor from overheating, the inverter has an electronic thermal O/L relay. However, install an external thermal overcurrent relay (OCR) between the inverter and motors to operate several motors or a multi-pole motor with one inverter. In this case, set 0 A to the electronic thermal O/L relay setting of the inverter. For the external thermal overcurrent relay, determine the setting value in consideration of the current indicated on the motor's rating plate and the line-to-line leakage current. (Refer to page 89.)

Self cooling ability of a motor reduces in the low-speed operation. Installation of a thermal protector or a use of a motor with built-in thermistor is recommended.

• Output side measuring instrument

When the inverter-to-motor wiring length is long, especially for the 400 V class, small-capacity models, the meters and CTs may generate heat due to line-to-line leakage current. Therefore, choose the equipment which has enough allowance for the current rating.

When measuring and displaying the output voltage and output current of the inverter, use of terminals AM and 5 output function of the inverter is recommended.

Disuse of power factor improving capacitor (power factor correction capacitor)

The power factor improving capacitor and surge absorber on the inverter output side may be overheated or damaged by the harmonic components of the inverter output. Also, since an excessive current flows in the inverter to activate overcurrent protection, do not provide a capacitor and surge absorber. To improve the power factor, use an AC reactor (on **page 65**), a DC reactor (on **page 66**), or a high power factor converter (on **page 77**).

Electrical corrosion of the bearing

When a motor is driven by the inverter, axial voltage is generated on the motor shaft, which may cause electrical corrosion of the bearing in rare cases depending on the wiring, load, operating conditions of the motor or specific inverter settings (high carrier frequency, use of a capacitive filter *1). Contact your sales representative to take appropriate countermeasures for the motor.

The following shows examples of countermeasures for the inverter.

- Decrease the carrier frequency.
- Remove the capacitive filter.
- Provide a common mode choke on the output side of the inverter.*2
- (This is effective regardless of the use of the capacitive filter.)
- *1 Mitsubishi Electric capacitive filter: FR-BIF, SF[], FR-E5NF-[], FR-S5NFSA[], FR-BFP2-[]
- *2 Recommended common mode choke: FT-3KM F series FINEMET[®] common mode choke cores manufactured by Proterial, Ltd. FINEMET is a registered trademark of Proterial, Ltd.

Cable gauge and wiring distance

If the wiring distance is long between the inverter and motor, during the output of a low frequency in particular, use a large cable gauge for the main circuit cable to suppress the voltage drop to 2% or less. (The table on **page 84** indicates a selection example for the wiring length of 20 m.) Especially for longdistance wiring or wiring with shielded cables, the inverter may be affected by a charging current caused by stray capacitances of the wiring, leading to an incorrect activation of the overcurrent protective function. Refer to the maximum wiring length shown in the following table.

(When multiple motors are connected, use the total wiring length shown in the table or shorter.)

Cable type	Pr.72 setting (carrier fre- quency)	Voltage class	0.1K	0.2K	0.4K	0.75K	1.5K	2.2K	3.7K or higher
þ	1 (1 kHz) or lower	100V 200V	200m	200m	300m	500m	500m	500m	500m
elde		400V	-	-	200m	200m	300m	500m	500m
Unshi	2 (2 kHz)	100V 200V	30m	100m	200m	300m	500m	500m	500m
		400V	-	-	30m	100m	200m	300m	500m
Ч	1 (1 kHz) or lower	100V 200V	50m	50m	75m	100m	100m	100m	100m
ldec		400V	-	-	50m	50m	75m	100m	100m
Shie	2 (2 kHz)	100V 200V	10m	25m	50m	75m	100m	100m	100m
	. ,	400V	-	-	10m	25m	50m	75m	100m

When using the automatic restart after instantaneous power failure function with wiring length exceeding 100 m, select without frequency search (**Pr.162** = "1, 11").

For the remote operation using analog signals, keep the control cable distance between the operation signal transmitter and the inverter to 30 m or less. Also, to prevent induction from other devices, keep the wiring away from the power circuits (main circuit and relay sequential circuit).

When the frequency setting is performed using the external potentiometer, not using the parameter unit, use a shielded or twisted cable as shown in the figure below. Connect the shield cable to terminal 5, not to the earth (ground).

Earth (ground)

When the inverter is set for the low acoustic noise operation, the leakage current increases compared to in the normal operation due to the high speed switching operation. Always earth (ground) the inverter and the motor. Also, always use the earth (ground) terminal of the inverter for earthing (grounding). (Do not use a case or chassis.)

Electromagnetic interference (EMI)

For the low acoustic noise operation with high carrier frequency, electromagnetic noise tends to increase. Take countermeasures by referring to the following examples. Depending on an installation condition, noise may affect the inverter also in the normal operation (initial status).

- Decrease the carrier frequency (**Pr.72**) setting to lower the EMI level.
- As measures against AM radio broadcasting noise, radio noise filter FR-BIF produces an effect.
- As measures against sensor malfunction, line noise filter FR-BSF01, FR-BLF produces an effect.
- For effective reduction of induction noise from the power cable of the inverter, secure the distance of 30 cm (at least 10 cm) from the power line and use a shielded twisted pair cable for the signal cable. Do not earth (ground) the shield, and connect the shield to a common terminal by itself.

EMI measure example

cables directly to the enclosure.

Do not use control cables for earth (ground)

Leakage current

Capacitances exist between the I/O cables or other cables of the inverter and earth, and in the motor, through which a leakage current flows. The amount of current leakage depends on the factors such as the size of the capacitance and the carrier frequency. Low acoustic noise operation at an increased carrier frequency of the inverter will increase current leakage. Take the following precautions to prevent current leakage. Earth leakage circuit breakers should be selected based on their rated current sensitivity, independently of the carrier frequency setting.

• To-earth (ground) leakage currents

Туре	Influence and countermeasure
Influence and precautions	 Leakage currents may flow not only into the power system of the inverter but also into other power systems through the earthing (grounding) cable, etc. These leakage currents may operate earth leakage circuit breakers and earth leakage relays unnecessarily. Precautions If the carrier frequency selection setting. However, the motor noise increases. Selecting Pr.240 Soft-PWM operation selection makes the sound inoffensive. By using earth leakage circuit breakers designed to suppress harmonics and surge voltage in the power system of the inverter and other devices, operation can be performed with the carrier frequency kept high (with low noise).
Transmission path	Power supply

+ Line-to-line leakage current

Туре	Influence and countermeasure
Influence and precautions	 Line-to-line leakage current flows through the capacitance between the inverter output lines. Harmonic component of the leaked current may cause unnecessary operation of an external thermal relay. Long wiring length (50 m or longer) for the 400V class small capacity models (7.5 kW or lower) will increase the rate of leakage current against the rated motor current. In such a case, an unnecessary operation of the external thermal relay may be more liable to occur. Precautions Use Pr.9 Electronic thermal O/L relay. If the carrier frequency setting is high, decrease the Pr.72 PWM frequency selection setting. However, the motor noise increases. Selecting Pr.240 Soft-PWM operation selection makes the sound inoffensive. To protect motor securely without being subject to the influence of the line-to-line leakage current, direct detection of the motor thermal current direct detection of the motor thermal relay as the selection of the setting.
Transmission path	Power supply Line-to-line leakage currents path

• Harmonic Suppression Guidelines

Inverters have a converter section (rectifier circuit) and generate a harmonic current.

Harmonic currents flow from the inverter to a power receiving point via a power transformer. The Harmonic Suppression Guidelines was established to protect other consumers from these outgoing harmonic currents.

The three-phase 200 V input specifications 3.7 kW or lower (or singlephase 200 V input specifications 2.2 kW or lower and single-phase 100 V input specifications 0.75 kW or lower) were previously covered by the Harmonic Suppression Guidelines for Household Appliances and General-purpose Products and other models were covered by the Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage. However, the transistorized inverter has been excluded from the target products covered by the Harmonic Suppression Guidelines for Household Appliances and General-purpose Products in January 2004 and the Harmonic Suppression Guideline for Household Appliances and General-purpose Products was repealed on September 6, 2004.

All capacity and all models of general-purpose inverter used by specific consumers are now covered by the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage".

 "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage"

This guideline sets the maximum values of outgoing harmonic currents generated from a high-voltage or specially high-voltage receiving consumer who will install, add or renew harmonic generating equipment. If any of the maximum values is exceeded, this guideline requires that consumer to take certain suppression measures.

The users who are not subjected to the above guidelines do not need follow the guidelines, but the users are recommended to connect a DC reactor and an AC reactor as usual.

Compliance with the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage"

Input power	Target capacity	Countermeasure
Single-phase 100V Single-phase 200 V Three-phase 200 V Three-phase 400 V	All capacities	Confirm the compliance with the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage" published in September 1994 by the Ministry of International Trade and Industry (the present Japanese Ministry of Economy, Trade and Industry). Take countermeasures if required. Use the following materials as reference to calculate the power supply harmonics. Reference materials • "Harmonic Suppression Measures of the General-purpose Inverter" January 2004, Japan Electrical Manufacturers' Association • "Calculation Method of Harmonic Current of the General-purpose Inverter Used by Specific Consumers" JEM-TR201 (Revised in December 2003), Japan Electrical Manufacturers' Association

For compliance to the "Harmonic Suppression Guideline of the Generalpurpose Inverter (Input Current of 20A or Less) for Consumers Other

Than Specific Consumers" published by JEMA

Input power	capacity	Measures
Single-phase	0.75 kW or	Connect the AC reactor or DC reactor
100 V	lower	recommended in the Catalogs and Instruction
Single-phase 200 V	2.2 kW or lower	Manuals. Reference materials • "Harmonic Suppression Guideline of the General-purpose Inverter (Input Current of 20A or Less)"
Three-phase	3.7 kW or	JEM-TR226 (Published in December 2003),
200 V	lower	Japan Electrical Manufacturers' Association

Calculation of outgoing harmonic current

Outgoing harmonic current = fundamental wave current (value converted from received power voltage) × operation ratio × harmonic content

- Operation ratio: Operation ratio = actual load factor × operation time ratio during 30 minutes
- Harmonic content: Found in the table below.
- Harmonic contents (values when the fundamental wave current is 100%)

	Reactor	5th	7th	11th	13th	17th	19th	23rd	25th
	Not used	65	41	8.5	7.7	4.3	3.1	2.6	1.8
Three-phase	Used (AC side)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
bridge (capacitor smoothing)	Used (DC side)	30	13	8.4	5.0	4.7	3.2	3.0	2.2
	Used (AC, DC sides)	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4
Single-phase	Not used	60	33.5	6.1	6.4	2.6	2.7	1.5	1.5
bridge (capacitor smoothing, full- wave rectification)	Used (AC side)	31.9	8.3	3.8	3.0	1.7	1.4	1.0	0.7

 Rated capacities and outgoing harmonic currents when driven by inverter

ъ (M	Fur me wave rent	Funda- mental ave cur- کی (۲۸۸) ent (A) و موالد (۲۸۸)			Outgoing harmonic current converted from 6.6 kV (mA) (No reactor, 100% operation ratio)								
Applied motor (k)	200 V	400 V	Fundamental wav converted from 6.	Rated capacity	5th	7th	11th	13th	17th	19th	23rd	25th	
0.4	1.61	0.81	49	0.57	31.85	20.09	4.165	3.773	2.107	1.519	1.274	0.882	
0.75	2.74	1.37	83	0.97	53.95	34.03	7.055	6.391	3.569	2.573	2.158	1.494	
1.5	5.50	2.75	167	1.95	108.6	68.47	14.20	12.86	7.181	5.177	4.342	3.006	
2.2	7.93	3.96	240	2.81	156.0	98.40	20.40	18.48	10.32	7.440	6.240	4.320	
3.7	13.0	6.50	394	4.61	257.1	161.5	33.49	30.34	16.94	12.21	10.24	7.092	
5.5	19.1	9.55	579	6.77	376.1	237.4	49.22	44.58	24.90	17.95	15.05	10.42	
7.5	25.6	12.8	776	9.07	504.4	318.2	65.96	59.75	33.37	24.06	20.18	13.97	
11	36.9	18.5	1121	13.1	728.7	459.6	95.29	86.32	48.20	34.75	29.15	20.18	

· Conversion factors

Classification	Circ	Conversion coefficient Ki	
		Without reactor	K31 = 3.4
	Three-phase bridge	With reactor (AC side)	K32 = 1.8
3	(capacitor	With reactor (DC side)	K33 = 1.8
	smoothing)	With reactors (AC, DC sides)	K34 = 1.4
4	Single-phase bridge (capacitor	Without reactor	K43=2.9
	smoothing, full-wave rectification)	With reactor (AC side)	K44=1.3
5	Self-excitation three-phase bridge	When a high power factor converter is used	K5 = 0

• List of applicable inverter models by rating (motor capacity—inverter model)

Three-phase 200 V class

Motor	DC reactor	SLD		ND (initial	settings)
capacity (kW) *1	FR-HEL-[]	Model FR-D820-[]	Rated current (A) *3	Model FR-D820-[]	Rated current (A)
0.1	0.4K*2	0.1K-008	1.4(1.1)	0.1K-008	0.8
0.2	0.4K*2	0.1K-008	1.4(1.1)	0.2K-014	1.4
0.4	0.4K	0.2K-014	2.5(2.0)	0.4K-025	2.5
0.75	0.75K	0.4K-025	4.2(3.5)	0.75K-042	4.2
1.1	1.5K	0.75K-042	6.0(5.1)	1.5K-070	7
1.5	1.5K	1.5K-070	10(8.5)	1.5K-070	7
2.2	2.2K	1.5K-070	10(8.5)	2.2K-100	10
3.7	3.7K	2.2K-100	16.5(12.0)	3.7K-165	16.5
5.5	5.5K	3.7K-165	23.8(19.6)	5.5K-238	23.8
7.5	7.5K	5.5K-238	31.8(26.0)	7.5K-318	31.8
11	11K	7.5K-318	45(37.0)	-	-

♦ Three-phase 400 V class

Motor	DC reactor	SLI	C	ND (initial settings)		
capacity	ER-HEL-D	Model	Rated	Model	Rated	
(kW) *1		FR-D840-[]	current (A) *3	FR-D840-[]	current (A)	
0.4	H0.4K	0.4K-012	2.2(1.8)	0.4K-012	1.2	
0.75	H0.75K	0.4K-012	2.2(1.8)	0.75K-022	2.2	
1.5	H1.5K	0.75K-022	3.7(3.0)	1.5K-037	3.7	
2.2	H2.2K	1.5K-037	5(4.2)	2.2K-050	5	
3.7	H3.7K	2.2K-050	8.1(6.8)	3.7K-081	8.1	
5.5	H5.5K	3.7K-081	12(10.0)	5.5K-120	12	
7.5	H7.5K	5.5K-120	16.3(13.8)	7.5K-163	16.3	
11	H11K	7.5K-163	23(19.5)	-	-	

Single-phase 200 V class

Motor	DC reactor	ND				
capacity (kW) *1	FR-HEL-[]	Model FR-D820S-[]	Rated current (A)			
0.1	0.4K*2	0.1K-008	0.8			
0.2	0.4K*2	0.2K-014	1.4			
0.4	0.75K*2	0.4K-025	2.5			
0.75	1.5K*2	0.75K-042	4.2			
1.5	2.2K *2	1.5K-070	7			
2.2	3.7K*2	2.2K-100	10			

Single-phase 100 V class

Motor	ND						
capacity	Model	Rated					
(kW) *1	FR-D810W-[]	current (A)					
0.1	0.1K-008	0.8					
0.2	0.2K-014	1.4					
0.4	0.4K-025	2.5					
0.75	0.75K-042	4.2					

*1 The motor capacity indicates the maximum capacity of a standard 4-pole motor driven by all of the inverters in parallel connection.

The value in parentheses is the rated output current when the low acoustic noise operation is performed with the surrounding air temperature exceeding 30°C while a 3 kHz or higher value is selected in **Pr.72 PWM frequency selection**.

• Overload current rating

SLD	110% 60s, 120% 3s (inverse-time characteristics) at surrounding air temperature of 40° C
ND	150% 60s, 200% 0.5s (inverse-time characteristics) at surrounding air temperature of $50^\circ C$

• IE5 compliant energy-saving high-accuracy PM motor EM-A series

The EM-A series high-performance magnet motors have Mitsubishi Electric's unique salient pole core*1 and enable speed control without using sensors.

*1 Japanese Patent No. 5646119

Compact and energy-saving

- Adopting an optimal motor core shape for sensorless control reduces the volume by 50 to 60% and the mass by 30 to 50% compared with induction motors.
- This energy-saving motor is compliant with IE5 efficiency class for variable speed motors*2.
- *2 Based on the efficiency standard (%) for variable speed motors (rated speed: 1801 to 6000 r/min) specified in IEC 60034-30-2.

Global

- This magnet motor does not need to be certified as compliant with high-efficiency standards in each country*3.
- The motor has already been certified as compliant with international safety standards (UL, CE).*4
- *3 As of April 2021 (For the shipment to China, the China Energy Label must be attached to the product.)
- *4 For the 400 V class, 0.4kW or higher motors are to be certified.

High performance

- The EM-A series enables highly accurate speed control with less speed fluctuations due to load change by using Mitsubishi Electric's unique PM sensorless vector control.
- The motor can be used for high-accuracy transport applications such as production lines of semiconductors or liquid crystals.
- Operation at stable speed under load variation is possible. Speed fluctuation: ±0.05%*5
- Speed control range: 1:10 (current synchronization operation) • Holding torque is generated by the servo lock function when the
- motor stops, preventing movements caused by external forces.
 This new salient pole type magnet motor and Mitsubishi Electric's unique high-performance sensorless control technique enable highly accurate speed control without using an encoder.
- *5 During the load fluctuation of 0 to 100% Speed fluctuation ratio = (actual speed - command speed) / rated speed × 100 (%)

[Operation torque characteristics]

When the input voltage is low, the torque may be reduced.

In the low-speed range, torque ripples or uneven rotation occur. Adjust the setting of **Pr.820 Speed control P gain** as required.

Compatibility between EM-A motors and FR-D800 inverters

Madal	Applicable motor capacity (kW)								
Widder	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5
Three-phase 200 V FR-D820	0	0	0	0	0	0	0	0	0
Three-phase 400 V FR-D840	-	-	0	0	0	0	0	0	0
Single-phase 200 V FR-D820S	0	0	0	0	0	0	-	-	-
Single-phase 100 V FR-D810W	0	0	0	0	-	-	-	-	-

o: Compatible, -: Not applicable

♦ Outline Dimensions

•EM-AMF 0.1kW

•EM-AMF 0.4kW

1 56

•EM-AMF 0.75kW

•EM-AMF 1.5kW

•EM-AMF 2.2kW

•EM-AMF 3.7kW

•EM-AMF 7.5kW

4-φ9

-φ13.5

4-φ9

1 Compatible Motors

(Unit: mm)

•EM-AMFB 0.1kW

•EM-AMFB 0.2kW

•EM-AMFB 0.4kW

•EM-AMFB 0.75kW

•EM-AMFB 1.5kW

φ6.6

•EM-AMFB 2.2kW

•EM-AMFB 3.7kW

đ

•EM-AMFB 7.5kW

(2-M8 s

4-φ13.5

•EM-AMFB 5.5kW

(Unit: mm)

• Specification comparison between PM sensorless vector control and induction motor control

Item	PM sensorless vector control	Induction motor control
Applicable motor	IPM motor or PM motor*1	Induction motor*1
Starting torque	50%	200% (FR-D820-3.7K-165 or lower, FR-D840-3.7K-081 or lower, FR-D820S-2.2K-100 or lower, FR-D810W-0.75K-042 or lower) and 150% (FR-D820-5.5K-238 or higher, FR-D840-5.5K-120 or higher) under Advanced magnetic flux vector control
Startup delay	Startup delay of about 0.1 s for magnetic pole position detection.	No startup delay.
Operation during coasting	While the motor is coasting, potential is generated across motor terminals.	While the motor is coasting, potential is not generated across motor terminals.

The rated motor current should be equal to or less than the inverter rated current. *1

If a motor with substantially low rated current compared with the inverter rated current is used, speed accuracy may deteriorate due to torque ripples, etc. Set the rated If a motor current to about 40% or higher of the inverter rated current.
Before wiring, make sure that the motor is stopped. Otherwise you may get an electric shock.
Never connect a PM motor to a commercial power supply.
No slippage occurs with a PM motor because of its characteristic. If a PM motor, which took over an induction motor, is driven at the same motor's stopped of the caparal-nurrose motor's stopped of the caparal-nurrose motor's stopped of the caparal-nurrose motor's stopped.

- speed as for the general-purpose motor, the running speed of the PM motor becomes faster by the amount of the general-purpose motor's slippage. Adjust the speed command to run the PM motor at the same speed as the induction motor, as required.

Countermeasures against deterioration of the 400 V class motor insulation

When driving a 400 V class motor by the inverter, surge voltage, which is attributed to the length and thickness of wire, may occur at the motor terminals, causing the motor insulation to deteriorate. When the 400 V class motor is driven by the inverter, consider the following countermeasures:

With induction motor

It is recommended to take one of the following countermeasures:

Rectifying the motor insulation and limiting the PWM carrier frequency according to the wiring length

For the 400 V class motor, use an <u>insulation-enhanced motor</u>. Specifically,

- Order a "400 V class inverter-driven insulation-enhanced motor".
- For the dedicated motor such as the constant-torque motor and low-vibration motor, use an "inverter-driven dedicated motor".
 Set Pr.72 PWM frequency selection as indicated below according to the wiring length.

	equency selection	as indicated below
Wiring length	Wiring length	Wiring length
50 m or shorter	50 m to 100 m	Longer than 100 m
14.5 kHz or lower	8 kHz or lower	2 kHz lower

· Suppressing the surge voltage on the inverter side

· Connect a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) at the output side of the inverter.

With PM motor

Use the wiring length of 30 m or shorter when connecting a PM motor.

Use one PM motor for one inverter. Multiple PM motors cannot be connected to an inverter.

Application to special motors

Motors with brake

Use the motor with brake having independent power supply for the brake, connect the brake power supply to the inverter primary side power and make the inverter output off using the output stop terminal (MRS) when the brake is applied (motor stop). Rattle may be heard according to the type of the brake in the low speed region but it is not a fault.

Pole changing motor

As this motor differs in rated current from the standard motor, confirm the maximum current of the motor and select the inverter. Be sure to change the number of poles after the motor has stopped. If the number of poles is changed during rotation, the regenerative overvoltage protection circuit may be activated to cause an inverter alarm, coasting the motor to a stop.

Submersible motor

Since the motor rated current is larger than that of the standard motor, make selection of the inverter capacity carefully. In addition, the wiring distance between the motor and inverter may become longer, refer to **page 84** to perform wiring with a cable thick enough. Leakage current may flow more than the land motor, take care when selecting the earth leakage current breaker.

Explosion-proof motor

To drive an explosion-proof type motor, an explosion-proof test of the motor and inverter together is necessary. The test is also necessary when driving an existing explosion-proof motor. The inverter is a non-explosion proof structure, install it in a safety location.

Geared motor

The continuous operating rotation range of this motor changes depending on the lubrication system and maker. Especially in the case of oil lubrication, continuous operation in the low-speed range only can cause gear seizure. For fast operation at higher than 60 Hz, please consult the motor maker.

Synchronous motor other than PM motor

This motor is not suitable for applications of large load variation or impact, where out-of-sync is likely to occur. Please contact your sales representative when using this motor because its starting current and rated current are greater than those of the standard motor and will not rotate stably at low speed.

Single-phase motor

The Single-phase motor is not suitable for variable operation by the inverter.

For the capacitor starting system, the capacitor may be damaged due to harmonic current flowing to the capacitor. For the split-phase starting system and repulsion starting system, not only output torque is not generated at low speed but it will result in starting coil burnout due to failure of centrifugal force switch inside. Replace with a three-phase motor for use.

• Major differences from the FR-D700 series

ltom			FR-D700			
item						
Applicable rating		I wo ratings (SLD/ND) ND rating only for the single-phase 100/200 V power input models	Not available (ND only)			
Overload current SLD rating		110% 60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C	Not available			
rating	ND rating	150% 60 s, 200% 0.5 s (inverse-time characteristics) at surrounding air temperature of 50°C	150% 60 s, 200% 0.5 s (inverse-time characteristics)			
Built-in brake transistor		Provided in FR-D820-0.4K-025 to 7.5K-318, FR-D840-0.4K-012 to 7.5K-163, FR-D820S-0.4K-025 to 2.2K-100, FR-D810W-0.4K-025 and 0.75K-042	Provided in FR-D720-0.4K to 15K, FR-D740-0.4K to 15K, FR-D720S-0.4K to 2.2K, FR-D710W-0.4K and 0.75K			
Protectiv	/e structure	Open type IP20 (for IEC 60529 only)	Enclosed type IP20 (for JEM 1030 only)			
		Soft-DWM control (Hick carrier frequency DWM control				
		Solt-F Will control / high carrier frequency F Will control				
	V/F control	Available				
	Advanced magnetic flux vector control	Available	Not available			
Control method	General-purpose magnetic flux vector control	Not available	Available			
	PM sensorless vector control	Available	Not available			
Control mode	Speed control	Available				
Output frequency		Induction motor: 0.2 to 590 Hz (The upper-limit frequency is 400 Hz under Advanced magnetic flux vector control.) PM motor: 0.2 to 400 Hz (not operable at a frequency higher than the maximum motor frequency)	0.2 to 400 Hz			
Frequency setting	Terminal 2	0.015 Hz / 0 to 60 Hz (0 to 10 V / 12 bits) 0.03 Hz / 0 to 60 Hz (0 to 5 V / 11 bits) 0.03 Hz / 0 to 60 Hz (0 to 20 mA / 11 bits)	0.06 Hz / 0 to 60 Hz (0 to 10 V / 10 bits) 0.12 Hz / 0 to 60 Hz (0 to 5 V / 9 bits)			
resolution	Terminal 4	0.015 Hz / 0 to 60 Hz (0 to 10 V / 12 bits) 0.03 Hz / 0 to 60 Hz (0 to 5 V / 11 bits) 0.03 Hz / 0 to 60 Hz (0 to 20 mA / 11 bits)	0.06 Hz / 60 Hz (0 to 10 V / 10 bits) 0.12 Hz / 60 Hz (0 to 5 V / 9 bits) 0.06 Hz / 60 Hz (0 to 20 mA / 10 bits)			
Output signal	Via terminal FM (pulse output)	Not available	1440 pulses/s at full scale			
Output signal	Via terminal AM (analog output)	0 to +10 V / 12 bits	Not available			
	Standard equipment	Operation panel installed as standard (not removable). 7-segment LED 4-digit display.	•			
Operation panel	Option	Enclosure surface operation panel (FR-PA07) LCD operation panel (FR-LU08) Parameter unit (FR-PU07(BB))	Enclosure surface operation panel (FR-PA07) Parameter unit (FR-PU07)			
Main circuit terminals		R, S, T, U, V, W, P, PR, N, P1, earth (ground) (screw terminal)				
	Shano of torminal					
	block	Spring clamp type				
	Contact input	5				
	Analog input	2				
Control circuit	Relay output	1				
terminal	Open collector output	2	1			
	Pulse output	Not available	1			
	Analog output	1	Not available			
	Sofoty input/output	51 52 DC 50 50C				
	Salety Input/output		51, 52, 50, 50			
Communication	RS-485	Mitsubishi inverter protocol, MODBUS RTU	PU connector Mitsubishi inverter protocol, MODBUS RTU			
	USB	USB Type-C connector: USB bus power available (Maximum SCCR: 500 mA)	Not available			
Surrounding air temperature Storage temperature Machine speed display Built-in potentiometer switching Control mode selection MRS input selection Offline auto tuning Applicable motor		-20°C to +60°C (non-freezing) SLD rating: The rated current must be reduced at a temperature above 40°C. ND rating: The rated current must be reduced at a temperature above 50°C.	-10°C to +50°C (non-freezing)			
		-40°C to +70°C	-20°C to +65°C			
		The rotation speed is displayed when Pr.53 = "1". The machine speed is displayed when Pr.53 = "4". Use Pr.37 and Pr.505 to set the reference for machine speed.	The machine speed is displayed when Pr.37 ≠ "0".			
		Pr.146 unavailable (PA02 not supported)	Pr.146 available			
		V/F control when "40" is set in Pr.800 .	V/F control when "9999" is set in Pr.80 .			
		Use Pr.17 to change the input specifications of the MRS and X10 signals.	Use Pr.17 to change the input specification of the MRS signal.			
		Set Pr.96 = "11" to enable offline auto tuning for V/F control (frequency search for the automatic restart after instantaneous power failure).	Set Pr.96 = "21" to enable offline auto tuning for V/F control (frequency search for the automatic restart after instantaneous power failure).			
		Setting. Set Pr.71 to a value whose last digit is 3 to change the setting range of the motor constant.	Set Pr.71 to a value whose last digit is 3 to enable offline auto tuning.			
		Set "10" for the constant-torque motor	Set "1" for the constant-torque motor			

Installation precautions

• Installation/removal procedures of the front cover and wiring cover are different. (Refer to the Instruction Manual (Connection).)

• Wiring instructions

• To use the PU connector, note that wiring methods are different. (Refer to the Instruction Manual (Connection).)

Copying parameter settings

The FR-D700 series' parameter settings can be easily copied to the FR-D800 series by using the setup software (FR Configurator2). (Not supported by the setup software FR-SW3-SETUP or older.)

• Comparison with the FR-D700 series in functions

	Differences with the FR-D700 series					
Parameter/Function	Addition	Modifi- cation	Deletion	Related parameter	Remarks	
Parameters/functions related to the output frequency (such as Base frequency)		0		Pr.3 and others	The upper limit of the setting range is changed from 400 Hz to 590 Hz for V/F control. For other control, the upper limit is 400 Hz.	
MRS input selection		0		Pr.17	NC contact input specification can be selected for terminal X10.	
Stall prevention operation level, etc.		0		Pr.22, Pr.150, Pr.165	Multiple ratings are supported. SLD: 110% ND: 150%	
Operation panel main monitor selection, AM terminal function selection, etc.		0		Pr.52, Pr.158, and others	Monitor items are added (control circuit temperature and energy saving effect).	
Frequency / rotation speed unit switchover	0			Pr.53		
Restart coasting time, etc.		0		Pr.57, Pr.165	The setting range is changed.	
Remote function selection		0		Pr.59	The setting range is changed.	
Special regenerative brake duty		0		Pr.70	The setting range of the brake duty is changed.	
Applied motor		0		Pr.71	Addition of motors: • Mitsubishi Electric PM motor EM-A series	
Analog input selection		0		Pr.73	Input current: 0 to 20 mA	
Motor capacity, number of motor poles, etc.	0	0		Pr.80, Pr.81, and others	The number of motor poles can be set.	
Speed control gain (Advanced magnetic flux vector)	0			Pr.89		
Motor constant (R2)	0			Pr.91	1	
Motor constant (L1)/d-axis inductance (Ld)	0			Pr.92		
Motor constant (L2)/q-axis inductance (Lq)	0			Pr.93		
Motor constant (X)	0			Pr.94		
Auto tuning setting/status		0		Pr.96	Setting values are added. 0, 1, 11	
RS-485 communication speed		0		Pr.118	Communication speed settings are added. 57600 bps, 76800 bps, 115200 bps	
PID action selection		0		Pr.128	Forward and reverse actions using Pr.609 and Pr.610 are added.	
MC switchover interlock time	0			Pr.136		
Automatic switchover frequency from inverter to bypass operation			Pr.139			
Output current / zero current detection level		0		Pr.150, Pr.152	The detection level is extended to 400%.	
Voltage reduction selection during stall prevention operation	0			Pr.154		
Output current detection operation selection		0		Pr.167	The Y13 status is added.	
User group registered display/batch clear	0			Pr.172 to Pr.174		
Input/output terminal function selection		0		Pr.178 to Pr.192	Input/output signals are added.	
NET output selection	0			Pr.193 to Pr.196		
ABC terminal function selection		0		Pr.192		
Output terminal filter	0			Pr.289	The terminal response can be adjusted.	
Pulse train input selection	0			Pr.291		
Overspeed detection level	0			Pr.374		
frequency for zero input pulse / frequency for maximum input pulse /	0			Pr.384 to Pr.386		
Speed setting reference	0			Pr.505		
Display estimated main circuit capacitor residual life	0			Pr.506		
Display/reset ABC relay contact life o			Pr.507			
Display power cycle life	isplay power cycle life o Pr.509		Pr.509			
Emergency drive	0			Pr.514, Pr.515 Pr.523, Pr.524 Pr.1013		

	Differences with the FR-D700 series					
Parameter/Function	Addition	Modifi- cation	Deletion	Related parameter	Remarks	
PID signal operation selection	0			Pr.553, Pr.554		
Multiple rating setting	0			Pr.570		
Motor overheat protection	0			Pr.600 to Pr.604, Pr.607, Pr.608 Pr.692 to Pr.696 Pr.1016		
Functions related to PID set point	0			Pr.609, Pr.610		
Inverter output fault detection enable/ disable selection	0			Pr.631		
Voltage compensation amount setting	0			Pr.643		
Speed smoothing cutoff frequency	0			Pr.654		
Increased magnetic excitation deceleration	0			Pr.660 to Pr.662		
Control circuit temperature signal output level	0			Pr.663		
SF-PR slip amount adjustment operation	0			Pr.673, Pr.674		
Input terminal filter	0			Pr.699	The terminal response can be adjusted.	
Pulse increment setting for output power	0			Pr.799		
Control mode selection	0	0	0	Pr.800, Pr.702, Pr.706, Pr.707, Pr.711, Pr.712, Pr.717, Pr.721, Pr.724, Pr.725, and others	 Advanced magnetic flux vector control added. PM sensorless vector control, speed control added. The setting value to select V/F control is changed to "40". General-purpose magnetic flux vector control deleted. 	
Torque limit parameters	0			Pr.810, Pr.811, Pr.815		
Speed control parameters	0		Pr.820, Pr.821 Pro		Proportional gain, integral time	
Torque control parameters	0			Pr.824, Pr.825	Proportional gain, integral time	
Torque current/Rated PM motor current	0			Pr.859		
Low speed detection	0			Pr.865		
Torque monitoring reference	0			Pr.866		
Speed detection hysteresis	0			Pr.870		
OLT level setting	0			Pr.874		
Regeneration avoidance compensation frequency limit value		0		Pr.885	The setting range is extended to 45 Hz.	
Internal storage device status indication	0			Pr.890		
Energy saving monitoring	0			Pr.892 to Pr.899		
Integral stop selection at limited frequency	0			Pr.1015		
Trace function	0			Pr.1020, Pr.1022 to Pr.1047		
Display-off waiting time	0			Pr.1048		
Monitor filter	0			Pr.1106 to Pr.1108	Monitor filters for the torque monitor, running speed monitor, and excitation current monitor.	
Motor induced voltage constant (phi f) exponent	0			Pr.1412		
Load characteristics fault detection	0			Pr.1480 to Pr.1492		

Related manuals

When using this inverter for the first time, prepare the following manuals as required and use the inverter safely. The latest version of e-Manual Viewer and the latest PDF manuals can be downloaded from the Mitsubishi Electric FA Global Website. https://www.mitsubishielectric.com/app/fa/download/search.do?kisyu=/inv&mode=manual

- e-Manual refers to the Mitsubishi Electric FA electronic book manuals that can be browsed using a dedicated tool.
 - e-Manual has the following features: Required information can be cross-searched in multiple manuals. Pages that users often browse can be bookmarked.

Manuals related to the FR-D800 inverter are shown in the following table.

Inverter Safety Guideline

1		
	FR-D800 Instruction Manual (Startup)	Manual describing the basic information from unpacking the product to driving the motor.
	FR-D800 Instruction Manual (Connection)	Manuals describing installation, wiring, specifications, outline dimensions, standards, and how to connect options.
	FR-D800 Instruction Manual (Function)	Manual describing details of the functions.
	FR-D800 Instruction Manual (Communication)	Manual describing details of the communications.
	FR-D800 Instruction Manual (Maintenance)	Manual describing how to identify causes of faults and warnings.
	FR-D800 Instruction Manual (Functional Safety)	Manual describing the functional safety.
	FA System Security Guideline -Separate Volume [FREQROL]-	Document summarizing recommendations for customers when using our FA products.
	FR Configurator2 Instruction Manual	Manual describing details of the software used to set inverter parameters using a personal computer.

Name	Manual number
FR-D800 Inverter Safety Guideline	IB-0601019
FR-D800 Instruction Manual (Startup)	IB-0601026ENG
FR-D800 Instruction Manual (Connection)	IB-0601029ENG
FR-D800 Instruction Manual (Function)	IB-0601034ENG
FR-D800 Instruction Manual (Communication)	IB-0601039ENG
FR-D800 Instruction Manual (Maintenance)	IB-0601044ENG
FR-D800 Instruction Manual (Functional Safety)	BCN-A23498-007(E)
FA System Security Guideline -Separate Volume [FREQROL]-	BCN-C22005-1054
FR Configurator2 Instruction Manual	IB-0600516ENG

Warranty

When using this product, make sure to understand the warranty described below.

1. Warranty period and coverage

We will repair any failure or defect (hereinafter referred to as "failure") in our FA equipment (hereinafter referred to as the "Product") arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Term]

The term of warranty for Product is twelve months after your purchase or delivery of the Product to a place designated by you or eighteen months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

- (1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged.
- However, it will not be charged if we are responsible for the cause of the failure.
- (2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
- (3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
 - 1) a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
 - 2) a failure caused by any alteration, etc. to the Product made on your side without our approval
 - a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
 - 4) a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
 - 5) any replacement of consumable parts (condenser, cooling fan, etc.)
 - 6) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
 - 7) a failure caused by using the emergency drive function
 - 8) a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
 - 9) any other failures which we are not responsible for or which you acknowledge we are not responsible for
- 2. Term of warranty after the stop of production
 - (1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
 - (2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas

Our regional FA Center in overseas countries will accept the repair work of the Product; however, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

- 4. Exclusion of loss in opportunity and secondary loss from warranty liability
 - Regardless of the gratis warranty term, Mitsubishi Electric shall not be liable for compensation to:
 - (1) Damages caused by any cause found not to be the responsibility of Mitsubishi Electric.
 - (2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi Electric products.
 - (3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi Electric products.
 - (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

6. Application and use of the Product

- (1) For the use of our product, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in product, and a backup or fail-safe function should operate on an external system to product when any failure or malfunction occurs.
- (2) Our product is designed and manufactured as a general purpose product for use at general industries. Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used.

In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used. We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application.

Mitsubishi Electric's global FA network delivers reliable technologies and security around the world.

Production bases Under the lead of Nagoya Works, we form a powerful network to optimize our manufacturing processes.

Domestic bases

Nagoya Works

Shinshiro Factory Kani Factory

102

Production bases overseas
MDI Mitsubishi Electric Dalian Industrial Products Co., Ltd.

MEI Mitsubishi Electric India Pvt.

 MEAMC
 Mitsubishi Electric Automation Manufacturing (Changshu) Co., Ltd.

 MEATH
 Mitsubishi Electric Automation (Thailand) Co., Ltd.

Thailand FA MITSUBISH AUTOMATI	A Center II ELECTRIC FACTORY ON(THAILAND) CO.,LTD		Service bases are established around Overseas bases are opening one after	d the world to provide the sa er another to support our cus	me services as in Japan globally. stomers' business expansion.
			Area	Our overseas	FA centers
					7
			EMEA	39	<u> </u>
and a state	Korea FA Center		China	25	4
	MITSUBISHI ELECTRIC		Asia	49	16
	AUTOMATION KOREA COLLTD		Americas	19	6
			_I otal ·As of March 2021	132	33
	MITSUBISHI ELECTRIC CORPORATIO Factory Automation Systems Group				North America FA Center MITSUBISHI ELECTRIC AUTOMATION,INC.
	Taichung FA Center MITSUBISHI ELECTRIC TAIWAN CO.,LTD				Mexico Monterrey FA Center Monterrey Office, Mitsubishi Electric Automation, Inc.
	Taipei FA Center SETSUYO ENTERPRISE CO.,LTD				Mexico FA Center Querétaro Office, Mitsubishi Electric Automation, Inc.
	Philippines FA Center MELCO FACTORY AUTOMATION PHILIPPINES INC.	Hanoi FA center Mitsubishi Electric Vietnam Company Limited Hanoi Branch		<u>J</u>	Mexico City FA Center Mexico FA Center Mexico Branch, Mitsubishi Electric Automation, Inc.
	Malaysia FA Center	Ho Chi Minh FA Cente MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED	er C		Brazil FA Center Mitsubishi Electric do Brasil Comércio e Serviços Ltda.
	ASEAN FA Center MITSUBISHI ELECTRIC ASIA PTE.LTD.				Brazil votorantim FA Center MELCO CNC do Brasil Comércio e Serviços S.A.

Tianjin FA Center MITSUBISHI ELECTR AUTOMATION (CHINA

Beijing FA Center MITSUBISHI ELECTR AUTOMATION (CHINA

China

Shanghai FA Center MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD.

Shenzhen FA Center MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD.

This solution solves customers' issues and concerns by enabling visualization and analysis that lead to improvements and increase availability at production sites.

Utilizing our FA and IT technologies and collaborating with e-F@ctory Alliance partners, we reduce the total cost across the entire supply chain and engineering chain, and support the improvement initiatives and one-step-ahead manufacturing of our customers.

Trademarks

e-F@ctory is a trademark or registered trademark of Mitsubishi Electric Corporation. PROFIBUS, PROFINET, and PROFISafe are either trademarks or registered trademarks of PROFIBUS & PROFINET International. Device Net, EtherNet/IP, and CIP safety are either trademarks or registered trademarks of ODVA. EtherCAT is a trademark of Beckhoff Automation GmbH.

Safety over EtherCAT is a trademark of Beckhoff Automation GmbH. MODBUS is a registered trademark of SCHNEIDER ELECTRIC USA, INC.

Ethernet is a registered trademark of Fuji Xerox Corporation in Japan. CC-Link IE TSN and CC-Link IE Field Network Basic are registered trademarks of the CC-Link Partner Association. Other company and product names herein are either trademarks or registered trademarks of their respective owners

A Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

Automating the World

Creating Solutions Together.

Compact and Modular Controllers

Numerical Control (NC)

Servos, Motors and Inverters

Collaborative and Industrial Robots

Products

Visualization: HMIs

Processing machines: EDM, Lasers

OIEEI

Power Monitoring and Energy Saving

Power (UPS) and Environmental Products

Edge Computing Products

SCADA, analytics and simulation software

Mitsubishi Electric's product lineup, from various controllers and drives to energy-saving devices and processing machines, all help you to automate your world. They are underpinned by software, innovative data monitoring, and modelling systems supported by advanced industrial networking and Edgecross IT/OT connectivity. Together with a worldwide partner ecosystem, Mitsubishi Electric factory automation (FA) has everything to make IoT and Digital Manufacturing a reality.

With a complete portfolio and comprehensive capabilities that combine synergies with diverse business units, Mitsubishi Electric provides a one-stop approach to how companies can tackle the shift to clean energy and energy conservation, carbon neutrality and sustainability, which are now a universal requirement of factories, buildings, and social infrastructure.

We at Mitsubishi Electric FA are your solution partners waiting to work with you as you take a step toward the realization of sustainable manufacturing and society through the application of automation. Let's automate the world together!

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN